• Title/Summary/Keyword: Blood plasma

Search Result 2,263, Processing Time 0.026 seconds

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Effects of prilled fat supplementation in diets with varying protein levels on production performance of early lactating Nili Ravi Buffaloes

  • Saba Anwar;Anjum Khalique;Hifzulrahman;Muhammad NaeemTahir;Burhan E Azam;Muhammad Asim Tausif;Sundas Qamar;Hina Tahir;Murtaza Ali Tipu;Muhammad Naveed ul Haque
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1387-1397
    • /
    • 2024
  • Objective: The objective of the current study was to find out the independent and interactive effects of prilled fat supplementation with protein on the production performance of early lactating Nili Ravi buffaloes. Methods: Sixteen early lactating buffaloes (36.75±5.79 d in milk; mean±standard error) received 4 treatments in 4×4 Latin-square design according to 2×2 factorial arrangements. The dietary treatments were: i) low protein low fat, ii) low protein high fat, iii) high protein low fat, and iv) high protein high fat. The dietary treatments contained 2 protein (8.7% and 11.7% crude protein) and fat levels (2.6% and 4.6% ether extract) on a dry matter basis. Results: The yields of milk and fat increased with increasing protein and fat independently (p≤0.05). Energy-, protein-, and fat-corrected milk yields also increased with increasing protein and fat independently (p≤0.05). Increasing dietary protein increased the protein yield by 3.75% and lactose yield by 3.15% and increasing dietary fat supplies increased the fat contents by 3.93% (p≤0.05). Milk yield and fat-corrected milk to dry matter intake ratios were increased at high protein and high fat levels (p≤0.05). Milk nitrogen efficiency was unaffected by dietary fat (p>0.10), whereas it decreased with increasing protein supplies (p≤0.05). Plasma urea nitrogen and cholesterol were increased by increasing protein and fat levels, respectively (p≤0.05). The values of predicted methane production reduced with increasing dietary protein and fat. Conclusion: It is concluded that prilled fat and protein supplies increased milk and fat yield along with increased ratios of milk yield and fat-corrected milk yields to dry matter intake. However, no interaction was observed between prilled fat and protein supplementation for production parameters, body weight, body condition score and blood metabolites. Predicted methane production decreased with increasing protein and fat levels.

Utilization of Supercompensated Glycogen of Hindlimb Muscles during Strenous Exercise in Rats (운동부하 흰쥐의 하지골격근에서 과축적 당원의 이용양상)

  • Jun, Chun-Bae;Ahn, Jong-Chul;Song, Dae-Heup;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.137-154
    • /
    • 1997
  • The aim of the present investigation has, been to evaluate the depletion pattern of the supercompensated glycogen of hindlimb muscles during strenous exercise in rats. The plan of the maximizing muscle glycogen stores is based on the fact that a glycogen-depleted muscle by exercise will have an increased avidity for glycogen when exposed to a high carbohydrate diet. The glycogen concentration of soleus, red gastrocnemius and plantaris muscle, and liver was measured at 0, 30 and 60 minutes during treadmill exercise. The experimental animals were divided into 5 group - Normal(N), Control(C), 1Hour(1HR:after 1hour of glucose ingestion), 2Hour(2HR:after 2hour of glucose ingestion) and Exercise-1Hour(EX-1HR:glucose ingestion after 1 hour of preloading treadmill exercise)group - for glycogen storage study. The glycogen concentration of soleus, red gastrocnemius and plantaris muscles in N group was $4.57{\pm}0.34$, 5.11+0.24 and $6.55{\pm}0.20mg/gm\;wet\;wt.$, respectively. The glycogen concentration of soleus and red gastrocnemius in EX-1HR group were about 1.9 and 1.8 times than that of N group, respectively, but the concentration of plantaris was not higher than that of N group. The glycogen concentration of liver in N group was $41.0{\pm}1.47mg/gm\;wet\;wt.$ and the concentration of the overnight fasted C group was only 2.9% of the value of N group. The level of glycogen concentration of liver in the other glucose ingested groups(1HR, 2HR, including EX-1HR) was within 19 - 32% of that of N group. The blood glucose concentration of EX-1HR group was higher than that of N group, the plasma free fatty acid concentration of C and 2HR group was higher than that of N group, and the plasma insulin concentration of EX-1HR group was higher than that of N group. The concentrations of supercompensated glycogen of soleus and red gastrocnemius were rapidly decreased during 30 minutes of exercise but there was almost no changes of the concentration during the other 30 minutes of continuing exercise. The concentration of N group during 30 minutes of exercise was decreased but more slowly than those of EX-1HR group. The remaining level of glycogen after 60 minutes of exercise in EX-1HR group was higher than that of N group. Taken together, the mobilization of endogenous muscle glycogen at the first stage of exercise was proportioned to the initial level of glycogen concentration, and later on, when exercise continued, the muscle glycogen level was stabilized. And the remaining level of supercompensated muscle glycogen after 60 minutes of exercise was higher than that of normally stored glycogen level. The mobilization of the glycogen stroed in slow and fast oxidative muscle fibers is faster than in the fast glycolytic muscle fibers during strenous exercise.

  • PDF

The Role of Sympathetic Activity in the Early Phase of Liver Regeneration after Partial Hepatectomy (간-부분절제(肝-部分切除) 후 나타나는 재생과정(再生過程)에서 교감신경계(交感神經系)의 역할(役割)에 관(關)한 연구(硏究))

  • Choi, Sang-Hyun;Lee, Joong-Geun;Park, Chung-San;Chun, Boe-Gwun;Chun, Yeon-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.177-183
    • /
    • 1990
  • This study was undertaken to confirm whether or not the sympathetic nervous system takes part in the liver regeneration after partial hepatectomy. The male Sprague-Dawley rats were pretreated with I.P. injection of guanethidine 25 mg/kg: single dose (G-1); multiple doses once a day for 3 days (G-3), for 5 days (G-5), or for 6 days (G-6). The rats were subjected to partial hepatectomy $(70.4{\pm}1.99%)$ under light anesthesia of diethyl ether. 1) The systolic blood pressure of control rat was $98.0{\pm}3.9\;mmHg$ and was not affected by G-1. But after the pretreatment with G-3, G-5 or G-6, the pressure was markedly decreased by over 25 %. 2) Both of plasma norepinephrine and epinephrine levels showed the marked increases 3 hrs after the hepatectomy. However, the increases are entirely inhibited by G-1 or G-6. 3) All the liver contents of putrescine, spermidine and spermine showed the significant increases 6 hrs after the hepatectomy and were not affected by G-1 or G-6 with the exception of the inhibition of putrescine increase by only G-6. The present results suggest that the sympathetic activation appeared after partial hepatectomy seems not to play an important role in rat liver regeneration.

  • PDF

Isolated Lung Perfusion with Cisplatin in Rabbit - evaluation of pharmacokinetics and long term pathologic changes of the lung- (가토에서 Cisplatin을 사용한 분리 폐 관류 -약리학적 변화 및 폐의 장기적 병리학적 변화에 관한 연구-)

  • 김관민;김진국;한정호
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.613-620
    • /
    • 1999
  • Background: Recently, regional or isolated organ perfusion is being studied again as a drug administration modality which is able to reduce systemic toxicity while delivering high-dose chemotherapeutic agents. This research was planned to evaluate the pharmacokinetics and long-term pathologic changes of the lung in isolated lung perfusion (ILP) with cisplatin. Material and Method: Twenty-five New Zealand white rabbits were divided into 2 groups (Group I: 10, Group II: 15). The groups were then subdivided into 2 and 3 subgroups of 5 rabbits. In group I, tissue samples of the lung and kidney, and systemic blood for platinum concentration measurement were taken 30 minutes after systemic intravenous infusion of cisplatin (5 mg/kg) and isolated lung perfusion in each 5 rabbits. In 2 subgroups of group II, lung tissues for pathologic exams were taken 30 minutes and 1 week after ILP in each 5 rabbits, which received 10% pentastarch solution only and cisplatin, respectively. In the other subgroups, lung biopsy was undertaken 4 weeks after ILP with cisplatin. Result: When cisplatin was infused via systemic vein, the platinum concentration in the lung, kidney and plasma were 1.50${\pm}$0.43 $\mu\textrm{g}$/g, 7.65${\pm}$2.49 $\mu\textrm{g}$/g, 1.19${\pm}$0.03 $\mu\textrm{g}$/ml, respectively. However, the platinum concentration in the lung was about 50 times higher (75.43${\pm}$11.47 $\mu\textrm{g}$/g) than that of intravenous infusion group, and those in the kidney and plasma were decreased (1.30${\pm}$ 0.35 $\mu\textrm{g}$/g, 0.13${\pm}$0.02 $\mu\textrm{g}$/ml) when cisplatin was introduced through ILP. Pathologic change in the treated lung with ILP was characterized by the medial hypertrophy of the pulmonary arterioles and interstitial eosinophilic infiltration, which was not dependent on cisplatin

  • PDF

Cholinesterase Activities in Blood and Nervous Tissues of Rats following Intraperitoneal Repetitive Injection of Parathion (Parathion의 복강내 반복투여로 인한 Rat의 혈액 및 신경조직내 Cholinesterase 활성변화)

  • Do, Jae Cheul;Mo, Ki Chul;Kim, Young Hong;Huh, Rhin Sou
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.171-180
    • /
    • 1988
  • Parathion is widely used in agriculture, but it is highly toxic and now clear that parathion behaves like a cholinergic drug by inhibiting the enzyme cholinesterase. In order to know the effect of toxicity and cholinesterase activity in rats injected repeatedly with parathion, cholinesterase activity in plasma, whole brain and spinal cord, and the subacute toxicity after repetitive intraperitoneal injection of parathion 20 times every 3 days were investigated. The results obtained were summerized as follows ; $LD_{50}$ value of parathion given intraperitoneally to rats was 10.5mg/kg(95% confidence limits, 6.6-16.8mg/kg). In subacute toxicity test of parathion injected intraperitoneally, mortality of parathion-pretreated rats(B : 57%, C : 83%) were increased in comparison with the control(50%). Cholinesterase activities in plasma of parathion-pretreated rats(B : 0.47 U/ml, C : 0.36 U/ml, AA : 0.31 U/ml, B : 0.26 U/ml, CC : 0.17 U/ml) were significantly decreased in comparison with the control(0.58 U/ml). Cholinesterase activities in spinal cord of parathion-pretreated rats(B : 1.87 U/g, C : 1.29 U/g, AA : 1.27 U/g, BB : 0.71 U/g, CC : 0.25 U/g) were decreased in comparison with the control(2.48 U/g). Cholinesterase activities in whole brain of parathion-pretreated rats(B : 2.52 U/g, C : 1.32 U/g, AA : 2.48 U/g, BB : 1.08 U/g, CC : 0.51 U/g) were significantly inhibited in comparison with the control(4.67 U/g). However, there were no differences in the urea nitrogen and creatinine concentrations between parathion-pretreated rats and control.

  • PDF

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.11b
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF

The Role of Cyclooxygenase Metabolites in the Pathogenetic Mechanism of Endotoxin-Induced Acute Lung Injury in Domestic Pigs (내독소에 의한 돼지의 급성 폐손상에서 Cyclooxygenase 대사물의 역할에 관한 연구)

  • Yoo, Chul-Gyu;Jeong, Ki-Ho;Choi, Hyung-Seok;Lee, Hyuk-Pyo;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.1
    • /
    • pp.42-54
    • /
    • 1992
  • Background:It has been suggested that the cyclooxygenase metabolites play an important role in changes of early hemodynamic parameters in the endotoxin-induced acute lung injury. But there have been many debates about their role in the late increase of alveolar-capillary permeability, and it is not known whether they act directly or indirectly through oxygen free radicals which have been known to be produced during the metabolic process of cyclooxygenase pathway. So we performed this study to identify the pathogenetic role of cyclooxygenase metabolites in the endotoxin-induced acute lung injury in domestic pigs. Method: We infused endotoxin into 8 domestic pigs; endotoxin only (n=3), and pretreatment with indomethacin (n=5). We observed the sequential changes in hemodynamic parameters, the concentration of plasma oxidized glutathione (GSSG) in pulmonary arterial and venous blood, and albumin content in bronchoalveolar lavage fluid (BALF). Results: 1) While cardiac output decreased, mean pulmonary arterial pressure, pulmonary vascular resistance, and alveolar-arterial oxygen difference increased over phase 1 (0-2hr) and phase 2 (2-4.5hr) by endotoxin, indomethacin attenuated the decrease in cardiac output during phase 1 and increase in mean pulmonary arterial pressure, pulmonary vascular resistance, and alveolar-arterial oxygen difference during both phases. 2) The increase in plasma GSSG content during phase 2 was not attenuated by indomethacin. 3) The content of BALF albumin was significantly lower in indomethacin groups than that of endotoxin group. Conclusion: These results suggest that it is likely that cyclooxygenase metabolites have an effect on endotoxin-induced acute lung injury during both phases probably through direct action.

  • PDF

Effect of Crude Saponins from Soybean Cake on Body Weight and Glucose Tolerance in High-Fat Diet Induced Obese Mice (대두박 사포닌 보충이 식이성 유도 비만마우스의 체중과 내당능에 미치는 영향)

  • Kim, Sung-Mi;Seo, Kwon-Il;Park, Kyung-Wuk;Jeong, Yong-Kee;Cho, Young-Su;Kim, Myung-Joo;Kim, Eun-Jung;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • This study investigated the beneficial effects of crude saponins from soybean cake on body weight and glucose tolerance in high-fat (37% calories from fat) diet fed C57BL/6 mice. The mice were supplemented with three doses of saponins (0.5%, 1.0%, and 1.5%, wt/wt) and 1.0% Garcinia cambogia (wt/wt), positive control for 9 weeks. The body weight, visceral fat weight and epididymal adipocyte area were significantly reduced in the saponin supplemented groups in a dose dependent manner compared to the high-fat group. Saponins did not significantly affect food intake; however, cambogia significantly lowered food intake compared to the high-fat fed control group. The crude saponins from soybean cake supplement significantly lowered plasma leptin, triglyceride and total cholesterol levels, whereas they significantly elevated the fecal excretion of triglyceide in a dose dependent manner compared to the high-fat group. Cambogia did not affect the fecal excretion of lipid in the diet-induced obese mice. Supplementation of 1.5% saponin reduced the hepatic triglyceride content compared to the high-fat group. High-fat induced glucose intolerance with the elevation of blood glucose levels compared to the normal group; however, the saponins supplement significantly improved postprandial glucose levels. After 9 weeks of being fed a high-fat diet, the mice presented with significantly increased activities of hepatic fatty acid synthase and fatty acid ${\beta}$-oxidation; however, saponins and cambogia normalized these activities. These results indicate that saponins from soybean cake exhibit a potential anti-obesity effect and may prevent glucose intolerance by reducing body weight and plasma lipids, increasing fecal lipid excretion and regulating hepatic lipid metabolism in high-fat fed mice.

The Change of Vascular Reactivity in Rat Thoracic Aorta 3 Days after Acute Myocardial Infarction (흰쥐에서 급성심근경색 3일 후 흉부 대동맥 혈관 반응성의 변화)

  • Lee, Sub;Roh, Woon-Seok;Jang, Jae-Seok;Bae, Chi-Hoon;Park, Ki-Sung;Lee, Jong-Tae
    • Journal of Chest Surgery
    • /
    • v.42 no.5
    • /
    • pp.576-587
    • /
    • 2009
  • Background: The up-regulation of the nitric oxide (NO)-cGMP pathway might be involved in the change of vascular reactivity in rats 3 days after they suffer acute myocardial infarction. However, the underlying mechanism for this has not been clarified. Material and Method: Acute myocardial infarction (AMI) was induced by occluding the left anterior descending coronary artery (LAD) for 30 min (Group AMI), whereas the sham-operated control rats were treated similarly without LAD occlusion (Group SHAM), The concentration-response relationships for phenylephrine (PE), KCl, acetylcholine (Ach) and sodium nitroprusside (SNP) were determined in the endothelium intact E(+) and endothelium denuded E(-) thoracic aortic rings from the rats 3 days after AMI or a SHAM operation. The concentration-response relationships of PE in the E(+) rings from the AMI rats were compared with those relationships in the rings pretreated with nitric oxide synthase (NOS) inhibitor $N{\omega}$-nitro-L-arginine methyl ester (L-NAME) or the cyclooxygenase inhibitor indomethacin. The plasma nitrite/nitrate concentrations were checked via a Griess reaction. The cyclic GMP content in the thoracic aortic rings was measured by radioimmunoassay and the endothelial nitric oxide synthase (eNOS) mRNA expression was assessed by real time PCR. Result: The mean infarct size (%) in the rats with AMI was $21.3{\pm}0.62%$. The heart rate and the systolic and diastolic blood pressure were not significantly changed in the AMI rats. The sensitivity of the contractile response to PE and KCl was significantly decreased in both the E(+) and E(-) aortic rings of the AMI group (p<0.05). L-NAME completely reversed these contractile responses whereas indomethacin did not (p<0.05). Moreover, the sensitivity of the relaxation response to Ach was also significantly decreased in the AMI group (p<0.05). The plasma nitrite and nitrate content (p<0.05), the basal cGMP content (p<0.05) and the eNOS mRNA expression (p=0.056) in the AMI rats were increased as compared with the SHAM group. Conclusion: Our findings indicate that the increased eNOS activity and the up-regulation of the NO-cGMP pathway can be attributed to the decreased contractile or relaxation response in the rat thoracic aorta 3 days after AMI.