• Title/Summary/Keyword: Blood clam (Tegillarca granosa)

Search Result 4, Processing Time 0.018 seconds

Chromosomal Assembly of Tegillarca granosa Genome using Third-generation DNA Sequencing and Hi-C Technology (3세대 DNA 염기서열 분석과 Hi-C기술을 이용한 꼬막 게놈의 유전체 연구)

  • Kim, Jinmu;Lee, Seung Jae;Jo, Euna;Choi, Eunkyung;Cho, Minjoo;Shin, So Ryung;Lee, Jung Sick;Park, Hyun
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.97-105
    • /
    • 2021
  • Tegillarca granosa, is one of the most important fishery resources throughout Asia. However, due to industrialization factories, marine environmental pollution, and global warming, the marine fishery production has drop sharply. In order to understand the genetic factors of the blood clam, which is a major fishery resource on the southern coast of Korea, the whole genome of blood clam was studied. The assembled genome of T. granosa was 915.4 Mb, and 19 chromosomes were identified. 25,134 genes were identified, and 22,745 genes were functionally annotated. As a result of performing gene gain and loss analysis between the blood clam genome and eight other types of shellfish, it was confirmed that 725 gene groups were expanded, and 479 gene groups were contracted. The homeobox gene cluster of blood clam showed a well-preserved genetic structure within lophotrochozoan ancestor. T. granosa genome showed high similarity between three hemoglobin genes with Scarpharca broughtonii. The blood clam genome will provide information for the genetic and physiological characteristics of blood clam adaptation, evolution, and the development of aquaculture industry.

Genome Survey and Microsatellite Marker Selection of Tegillarca granosa (꼬막(Tegillarca granosa)의 유전적 다양성 분석을 위한 드래프트 게놈분석과 마이크로새틀라이트 마커 발굴)

  • Kim, Jinmu;Lee, Seung Jae;Jo, Euna;Choi, Eunkyung;Kim, Hyeon Jin;Lee, Jung Sick;Park, Hyun
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.38-46
    • /
    • 2021
  • The blood clam, Tegillarca granosa, is economically important in marine bivalve and is used in fisheries industry among western Pacific Ocean Coasts especially in Korea, China, and Japan. The number of chromosomes in the blood clam is known as 2n=38, but the genome size and genetic information of the genome are not still clear. In order to predict the genomic size of the T. granosa, the in-silico analysis analysed the genomic size using short DNA sequence information obtained using the NGS Illumina HiSeq platform. As a result, the genomic size of T. granosa was estimated to be 770.61 Mb. Subsequently, a draft genome assembly was performed through the MaSuRCA assembler, and a simple sequence repeat (SSR) analysis was done by using the QDD pipeline. 43,944 SSRs were detected from the genome of T. granosa and 69.51% di-nucleotide, 16.68% trinucleotide, 12.96% tetra-nucleotide, 0.82% penta-nucleotide, and 0.03% hexa-nucleotide were consisted. 100 primer sets that could be used for genetic diversity studies were selected. In the future, this study will help identify the genetic diversity of T. granosa and population genetic studies, and further identify the classification of origin between homogenous groups.

Effects of the Dissolved Oxygen Concentration on the Physiology of the Manila clam, Teillarca granosa (Linnaeus) (꼬막, Tegillarca granosa (Linnaeus)의 용존산소 변화에 따른 생리적 반응)

  • Shin Yun Kyung;Moon Tae Seok;Wi Chong Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.485-489
    • /
    • 2002
  • To investigate the effects of the dissolved oxygen concentration (DO) of Tetillarca granosa (Linnaeus), We measured $LC_{50}$, survival, oxygen consumption rate, filtration rates and blood composition under $10{\cdot}{\pm}0.5^{\circ}C$ and $25{\cdot}0.5^{\circ}C$ as a function of DO. The 16 days-$LC_{50}$ of DO for T. granosa was 1.31 mg DO/L in large individual and 0.95 mg DO/L in small individual. At 25$^{\circ}C$, the $LC_{50}$ of DO in large and small individual was 1.13 and 1.M mg DO/L, respectively. With decreasing DO, oxygen consumption rate, and filtration rates of T. granosa decreased. Blood composition of T. granosa was analysed hemoglobin, glucose, total protein, total cholesterol, GOT and GPT, Hg was increased with decreasing DO, but glucose was decreased below 1.2 mg DO/L. Total protein, total cholesterol, GOT and GPT were investigated irregular and decreasing aspect.

A Study on Suitable Site Selection of Blood Clams (Tegillarca granosa) using Habitat Suitability Factors in Tidal Flat, Cheonsu and Garolim Bays (천수만, 가로림만 갯벌에서 서식지 적합인자를 이용한 꼬막 적지선정 연구)

  • Jeon, Seung Ryul;Heo, Seung;Cho, Yoon-Sik;Choi, Yong-Hyeon;Oh, Geu Rim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.764-772
    • /
    • 2018
  • It is necessary to explore the possibility of alternative habitats and research the characteristics of basic habitats due to seeding, culturing and harvesting of blood clams (Tegillarca granosa) in tidal flats. Currently, dependence on naturally occurring spat is much higher than in other species, which may lead to a reduction in biological resources. In this study, we selected a total of 5 sites (Changgi, Hopo in Cheonsu Bay and Dangsan, Sachang, Wangsan in Garolim Bay) and examined habitat suitability factors for suitable site selection. Also, we considered the relationship of habitat suitability factors (Environment: water content, organic content; survival: mud content, mean size; growth: chlorophyll a). As a result, Wangsan had the highest score of the main habitat of blood clams (Habitat suitability score, Wangsan: 87; Dangsan: 86; Sachang: 81; Hopo: 78; and Changgi: 73). The sediment in Garolim Bay was fine-grained and the seasonal variation was lower than Cheonsu Bay. Therefore, it is considered that Garolim Bay is more suitable as a potential area and easy to utilize the space. In the future, search and selection of potential suitable sites could be considered to solve problems caused by the reduction of biological resources and the production for blood clams.