• Title/Summary/Keyword: Blood Flow Analysis

Search Result 468, Processing Time 0.026 seconds

Spectral Element modeling for the one-dimensional blood flow analysis (일차원 혈류해석을 위한 스펙트럴 요소 모델링)

  • Jang, In-Joon;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.152-155
    • /
    • 2008
  • The blood flow characteristics have been closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral element model for the blood flow through blood vessels. The spectral element model is formulated by using the variational method. The nonlinear terms in spectral element model are all treated as the pseudo-force and an iterative solution method is applied in the frequency domain.

  • PDF

A Structural Analysis on the Leaflet Motion Induced by the Blood Flow for Design of a Bileaflet Mechanical Heart Valve Prosthesis

  • Kwon, Young-Joo;Kim, Chang-Nyung;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1316-1323
    • /
    • 2003
  • This paper presents a structural analysis on the rigid and deformed motion of the leaflet induced by the blood flow required in the design of a bileaflet mechanical heart valve (MHV) prosthesis. In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis on the deformed motion of the leaflet are required sequentially and simultaneously. Fluid forces computed in the previous hemodynamics analysis on the blood flow are used in the kinetodynamics analysis on the rigid body motion of the leaflet. Thereafter, the structural mechanics analysis on the deformed motion of the leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet thickness becomes smaller than 0.6 mm.

A Numerical Analysis on the Curved Bileaflet Mechanical Heart Valve (MHV): Leaflet Motion and Blood Flow in an Elastic Blood Vessel

  • Bang, Jin-Seok;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1761-1772
    • /
    • 2005
  • In blood flow passing through the mechanical heart valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved.

Numerical analysis of blood flow in the cactus type KTAH (선인장 형태의 한국형 인공심장 내 3차원 혈류의 수치적 해석)

  • Park M.S.;Ko H.J.;Min B.G.;Shim E.B.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.695-696
    • /
    • 2002
  • Three-dimensional blood flow in the sac of the KTAH(Korean total artificial heart) is simulated using fluid-structure interaction model. The aim of this study is to delineate the three-dimensional unsteady-blood flow in the sac of KTAH. Incompressible viscous flow is assumed for blood using the assumption of Newtonian fluid. The numerical method employed in this study is the finite element software called ADINA. Fluid-structure interaction model between blood and sac is utilized to represent the deformation of the sac by the rigid moving actuator. Three-dimensional geometry of cactus type KTAH is chosen for numerical model with prescribed pressure boundary condition on the sac surface. Blood flow is generated by the motion of moving actuator and strongly interacts with the solid material surrounding blood. High shear stress is observed mainly near the inlet and outlet of the sac.

  • PDF

Pump performance analysis of Axial Flow Blood Pump using CFD (CFD를 활용한 축류형 혈액펌프의 펌프 특성 해석)

  • 최승한;김동욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.288-290
    • /
    • 2003
  • Artificial heart is divided by pulsation flow type and continuous flow type according to blood circulation pattern. Axial flow blood pump is a kind of continuous flow type artificial heart. Axial flow blood pump would be different pump performance according to impeller's shape and rotating velocity. Pump performance be able to compare by flow rate according to differential pressure and Impeller's rotating velocity. It confirms Impeller model of better efficiency according to compare Pump performance of axial flow blood pump using CFD with actual experiment result.

  • PDF

3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model (이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Roh, Hyung-Woon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

NUMERICAL ANALYSIS FOR THE EFFECT OF BLOOD FLOW RATE AND BIFURCATION ANGLE ON THE LOCATION OF ANTERIOR CIRCULATION ANEURYSM AND THE CHANGE OF BLOOD FLOW CHARACTERISTICS AFTER ANEURYSM FORMATION (전방순환동맥류 발생 위치에 대한 혈류량 및 분지각의 영향 및 동맥류 발생 전후의 유동 변화에 관한 수치해석 연구)

  • Kim, S.Y.;Ro, K.C.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.64-71
    • /
    • 2011
  • Cerebral aneurysm mostly occurs at a bifurcation of the circle of Willis. When the cerebral aneurysm is ruptured, a disease like subarachnoid hemorrhage and stroke is caused and this can be even deadly for patients. Generally it is known that causes of the intracranial aneurysm are a congenital deformity of the artery and pressure or shear stress from the blood flow. A blood flow pattern and the geometry of the blood vessel are important factors for the aneurysm formation. Research for several hemodynamic indices has been performed and these indices can be used for the prediction of aneurysm initiation and rupture. Therefore, the numerical analysis was performed for hemodynamic characteristics of the blood flow through the cerebral artery applying the various bifurcation angle and flow rate ratio. We analyze the flow characteristics using indices from the results of the numerical simulation. In addition, to investigate the flow pattern in the aneurysm according to the bifurcation angle and the flow rate ratio, we performed the numerical simulation on the supposition that the aneurysm occurs.

A Numerical Analysis on the Motion of a Curved Bileaflet in Mechanical Heart Valve(MHV) and the Characteristics of Blood Flow in an Elastic Blood Vessel (탄성혈관 내 곡면형 이엽 기계식 인공심장판막의 거동 및 혈액 유동 특성에 관한 수치해석적 연구)

  • Bang J. S.;Choi C. R.;Kim C. N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • In this study, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in terms of fluid-structure interaction. Here, blood has been assumed as a Newtonian, incompressible fluid. Pressure profiles have been used as boundary conditions at the ventricle and the aorta. From this analysis, the motion of the leaflet has been observed with fluttering phenomenon and rebound, and the flow fields of blood have been obtained with recirculation and regurgitation. The results can contribute to the development of design methodology for the curved bileaflet mechanical heart valve.

  • PDF

Thickness Effect on the Structural Durability of a Bileaflet Mechanical Heart Valve

  • Kwon, Young-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.5-12
    • /
    • 2003
  • This paper discusses about the thickness effects on the structural durability of a bileaflet mechanical heart valve (MHV). In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis for the deformed leaflet are required sequentially and simultaneously. Fluid forces computed in the fluid mechanics analysis on the blood flow are used in the kinetodynamics analysis for the leaflet motion. Thereafter, the structural mechanics analysis for the deformed leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet becomes thinner and thinner.

NUMERICAL ANALYSIS FOR THE EFFECT OF BLOOD FLOW RATE AND BIFURCATION ANGLE ON THE LOCATION OF ANTERIOR CIRCULATION ANEURYSM AND THE CHANGE OF BLOOD FLOW CHARACTERISTICS AFTER ANEURYSM FORMATION (전방순환동맥류 발생 위치에 대한 혈류량 및 분지각의 영향 및 동맥류 발생 전후의 유동 변화에 관한 수치해석 연구)

  • Kim, S.Y.;Ro, K.C.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.161-168
    • /
    • 2011
  • Cerebral aneurysm mostly occurs at a bifurcation of the circle of Willis. When the cerebral aneurysm is ruptured a disease like subarachnoid hemorrhage and stroke is caused and this can be even deadly for patients. Generally it is known that causes of the intracranial aneurysm are a congenital deformity of the artery and pressure or shear stress from the blood flow. A blood flow pattern and the geometry of the blood vessel are important factors for the aneurysm formation. Research for several hemodynamic indices has been performed and these indices can be used for the prediction of aneurysm initiation and rupture. Therefore, the numerical analysis was performed for hemodynamic characteristics of the blood flow through the cerebral artery applying the various bifurcation angle and flow rate ratio. We analyze the flow characteristics using indices from the results of the numerical simulation. In addition, to investigate the flow pattern in the aneurysm according to the bifurcation angle and the flow rate ratio, we performed the numerical simulation on the supposition that the aneurysm occurs.

  • PDF