• Title/Summary/Keyword: Blood Alcohol Dehydrogenase

Search Result 84, Processing Time 0.022 seconds

Effects of the Mori folium Extract in Streptozotocin-Induced Diabetic Rats (고혈당 흰쥐에서 상엽(桑葉)의 혈당 조절과 항산화 작용에 관한 연구)

  • Kim, Oh-Gon;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.811-821
    • /
    • 2006
  • Objectives : Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many methods have been tried to regulate oxygen free radicals for treating diabetes and its complications. Because Mori foliumhas been known to be effective for the treatment of diabetes, the methanol extract of Mori folium was tested for its effectiveness in reducing the oxidative stress induced by streptozotocin. Methods : The crushed Mori folium was extracted 3 times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ or 24 h. The extract was filtered and evaporated under reduced pressure using a rotary evaporator to yield 11.7 g. Mori folium extract was oral-administered to diabetic rats induced by streptozotocin at 100 mg per 1 kg of body weight for 20 days. The efficacy of the Mori foliumextract was examined with regard to the enzymatic pathways involved in oxygen free radical production and glutathione balance. Results : The effects of the Mori foliumin streptozotocin-induced diabetic rats with regards to body weight, blood glucose and insulin level, hepatic lipid peroxide level, hepatic glutathione level, hepatic glutathione S-transferase and glutathione peroxidase level, hepatic aldose reductase activity, and hepatic sorbitol dehydrogenase activity were shown to be good enough to cure and prevent diabetes and its complications. Conclusions : These results indicated that Mori folium might reduce oxidative stress in tissues and organs by regulating the production of oxygen free radicals. Especially Mori folium might prevent and cure diabetes and its complications by reducing oxidative stress in the ${\beta}-cells$ of the pancreas.

  • PDF

Effects of Iksujisundan on Renal Function, Peroxynitrite Scavenging Activity and Polyol Pathway in Streptozotocin-induced Diabetic Rats (익수지선단(益壽地仙丹)이 Streptozotocin으로 유발된 당뇨병 흰쥐의 신기능, 활성산소, 활성질소 및 Polyol Pathway에 미치는 영향)

  • Jeon, Chang-Min;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.237-248
    • /
    • 2007
  • Objectives : Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many efforts have been tried to regulate free oxygen radicals for treating diabetes and its complications. Iksujisundan has been known to be effective for the treatment of diabetes. The present study was carried out to investigate the effect of Iksujisundan on renal function, peroxynitrite(ONOO-) scavenging activity and polyol pathway in streptozotocin-induced diabetic rats. Methods : The crushed Iksujisundan was extracted 3 times, each time with 3 volumes of methyl alcohol at 60$^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 87.8g. Iksujisundan extract was orally administreted at 100 mg per 1 kg of body weight for 20 days to the diabetic rats induced by streptozotocin(60mg/kg). The effects of Iksujisundan extract on the streptozotocin-induced diabetic rats were observed by measuring the serum level of glucose, insulin, lipid components, creatinine and BUN, and also the kidney levels of superoxide anion radical(${\cdot}$O2-), nitric oxide(NO) and ONOO-, and also the enzyme activities involved in the polyol pathway. Results : The effects of Iksujisundan on the streptozotocin-induced diabetic rats with regards to body weight, blood glucose and indulin levels, creatinine and BUN levels, total cholesterol and triglyceride lavels, and HDL-cholesterol levels were all shown to be good enough to prevent and cure the diabetes and its complications. Iksujisundan inhibited the generation of ${\cdot}$O2-,NO and ONOO- in the kidney of streptozotocin-induced diabetic rats. Renal aldose reductase and sorbitol dehydrogenase activities were increased in the streptozotocin-induced diabetic rats were reversed toward natural activities. Conclusions : Iksujisundan might inhibit the development of diabetes and its complications by scavenging reactive oxygen and nitrogen species, thereby by reducing oxidative stresses and also by regulating the activities of polyol pathway enzymes, all of which could help to recover kidney function.

  • PDF

Effects of Gamigukihwandong-hwan on Renal Function, Oxidative Stress and Polyol Pathway in Diabetic Nephropathy Rats (Streptozotocin으로 유발된 흰쥐의 당뇨병성 신증에서 가미구기환동환(加味枸杞還童丸)이 Oxidative Stress 및 Polyol Pathway에 미치는 영향)

  • Jeong, Hyung-Cheol;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.671-678
    • /
    • 2007
  • Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many efforts have been tried to regulate free oxygen radicals for treating diabetes and its complications. Gamigukihwandong-hwan has been known to be effective for the treatment of diabetes. The present study was carried out to investigate the effect of Gamigukihwandong-hwan on renal function, peroxynitrite (ONOO$^-$) scavenging activity and polyol pathway in streptozotocin-induced diabetic rats. The crushed Gamigukihwandong-hwan was extracted 3 times, each time with 3 volumes of methyl alcohol at 60$^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 74.95 g. Gamigukihwandong-hwan extract was oral-administered 100 mg per 1 kg of body weight for 20 days to the diabetic rats induced by streptozotocin (60 mg/kg). The effects of Gamigukihwandong-hwan extract on the streptozotocin-induced diabetic rats were observed by measuring the serum level of glucose, insulin, lipid components, creatinine and BUN, and also the kidney levels of superoxide anion radical (${\cdot}O_2^-$), nitric oxide (NO) and ONOO$^-$, and also the enzyme activities involved in polyol pathway. The Effects of Gamigukihwandong-hwan on the streptozotocin-induced diabetic rats with regards to body weight, blood glucose and insulin levels, creatinine and BUN levels, total cholesterol and triglyceride levels, and HDL-cholesterol levels were all shown to be good enough to cure and prevent the diabetes and its complications. Gamigukihwandong-hwan inhibited the generation of ${\cdot}O_2^-$, NO and ONOO$^-$ in the kidney of streptozotocin-induced diabetic rats. Renal aldose reductase and sorbitol dehydrogenase activities were increased in the streptozotocin-induced diabetic rats, whereas the ones in the Gamigukihwandong-hwan administered group among the streptozotocin-induced diabetic rats were reversed toward the natural activities. Gamigukihwandong-hwan might inhibit the development of diabetic nephropathy by scavenging reactive oxygen and nitrogen species, thereby by reducing oxidative stresses and also by regulating the activities of polyol pathway enzymes, all of which could help to recover the function of kidney.

Mycelial Culture of Lentinus edodes Alleviates Rat Liver Toxicity Induced by Carbon Tetrachloride and Ethanol (표고버섯균사체의 사염화탄소 및 알콜로 처리된 흰쥐 간기능 보호 효과)

  • Ha, Yeong-L.;Kim, Young-S.;Ahn, Chae-R.;Kweon, Jung-M.;Park, Cherl-W.;Ha, Young-K.;Kim, Jeong-O.
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.133-141
    • /
    • 2010
  • The protective effect of a mixed powder from solid-cultured and liquid-cultured Lentinus edodes mycelia (2:1, w/w) (designate LED) on the carbon tetrachloride ($CCl_4$)- and ethanol-induced hepatotoxicity of male Sprague-Dawley (SD) rat was investigated. In the $CCl_4$-induced rat hepatotoxicity experiment, rats of 4 groups (6 rats/group) were administere with Normal (0.2 ml distilled water), Control (0.2 ml distilled water), LED (LED 200 mg/kg BW + 0.2 ml distilled water), and Silymarin (200 mg/kg BW + 0.2 ml distilled water), p.o., daily for 2 weeks. Afterwards, all groups except for the Normal group were subjected to abdominal injection with $CCl_4$ ($CCl_4$ : corn oil, 1:1 v/v; 0.5 ml/kg BW). For the ethanol- induced rat hepatotoxicity experiment, rats were divided into 5 groups (5 rats/group): Normal; Pair-fed control (PFC); Control (ethanol); LED (ethanol + LED 200 mg/kg BW); and Silymarin (ethanol + silymarin 200 mg/kg BW). Rats of the Normal and PFC groups were fed a basal liquid diet, and rats of the Control, LED, and Silymarin groups were fed a liquid ethanol diet containing LED or Silymarin. Eight weeks later, blood and liver samples were collected to analyze biomarkers. In $CCl_4$-induced SD rats, LED elevated hepatic superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH peroxidase) activities and thiobarbituric reactive substances (TBARS) were reduced, resulting in the reduction of glutamate-oxalate transaminase (GOT), glutamate-pyruvate transaminase (GPT) and lactic dehydrogenase (LDH) activities in plasma. Similar results of these enzymes and biochemical markers in both liver tissues and plasma were seen in ethanol-induced hepatotoxicity of SD rats. In addition, elevated alcohol dehydrogenase (ADH) activity and reduced expression of cytochrome p450 mixed monooxygenase enzyme (CYP2E1) were seen in liver tissues from ethanol-treated rats by LED treatment. These effects of LED were similar to those of Silymarin. In in vitro experiments, LED showed antioxidant activity in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) system and mouse liver mitochondria system induced by NADPH/$Fe^{2+}$ and cumine hydroperoxide (CuOOH). These results indicate that LED protected SD rat hepatotoxicity, induced by $CCl_4$ and ethanol, through its antioxidative activity and might be useful as a material for protection from hepatoxicity in humans.