• Title/Summary/Keyword: Blocked mode

Search Result 65, Processing Time 0.019 seconds

Background $K^+$ channel currents in WEHI-231 cells, immature B lymphocytes

  • Nam, Joo-Hyun;Woo, Ji-Eun;Kim, Tae-Jin;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.39-39
    • /
    • 2003
  • In our previous study, WEHI-231, an immature B cell line, showed intractable increase in [C $a^{2+}$]$_{c}$ after the B-cell receptor (BCR) ligation and treatment with 2-aminoethoxydiphenylborate (2-APB), which was never observed in Bal-17, a mature B cell line (Nam et al., 2003, FEBS Lett). In this study, a whole cell voltage clamp study revealed a specific expression of a novel type of $K^{+}$ current, namely voltage-independent background-type $K^{+}$ channels (IK-bg), in WEHI-231 cells. IK-bg was dramatically increase by the application of 2-APB (50 $\square$M), which induced severe hyperpolarization of WEHI-231 from -45 ㎷ to -90 ㎷, When dialyzed with $Mg^{2+}$ and ATP-free pipette solution, a spontaneous development of IK-bg and membrane hyperpolarization were observed. IK-bg was insensitive to classical $K^{+}$ channel blockers (TEA, glibenclamide, $Ba^{2+}$(1 mM)), whereas blocked by quinine and quinidine in a voltage-dependent manner ($IC_{50}$/=6~9 $\square$M at +60㎷). Phorbol myrstate, a PKC activator, decreased the amplitude of IK-bg. Extracellular acidification (pH 6.5) slightly inhibited IK-bg. Arachidonic acid, riluzole, or hyposmotic stress could not affect the IK-bg after the full development by the intracellular dialysis with Mg-ATP-free solution. In a cell-attached mode of single channel recording from WEHI231, we found two types of voltage-independent $K^{+}$ channels with unitary conductance of 300 pS and 120 pS, respectively. Both channels showed very short mean open times and their open probabilities were increase by the application of 2-APB. In Bal-17 cells, no such $K^{+}$ current was observed in 50 cells tested. In summary, WEHI-231 immature B cells express background $K^{+}$ channels. The pharmacological properties and the large unitary conductance suggest that novel types of two-pore domain $K^{+}$ channels (2-P-K channels) might be expressed in WEHI-231, which may provide an intriguing targets of signal transduction in the immature B lymphocytes.e B lymphocytes.

  • PDF

Studies on Secretion of Catecholamines Evoked by Panaxadiol in the Isolated Rabbit Adrenal Gland (파낙스디올의 가토적출부신의 카테콜아민분비 작용에 관한 연구)

  • Lim Dong Yoon;Park Kyu Baik;Kim Kyu Hyung;Choi Cheol Hee;Cha Jong Hee
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.55-62
    • /
    • 1988
  • The effect of panaxadiol (PD). an active component of Korean ginseng saponins on the secretion of catecholamines (CA) from the rabbit adrenal gland and its mode of action were investigated. PD ($400\;{\mu}g$) increased significantly the secretion of CA from the isolated perfused rabbit adrenal gland. PD-induced secretion of CA was reduced markedly by treatment with atropine. CA secretion induced by Ach or PD was potentiated by physostigmine treatment. Chlorisondamine inhibited CA secretion of PD or Ach. Perfusion of PD ($400\;{\mu}g$) for 30 minutes enhanced the secretory activity of CA by Ach. Ouabain weakened the secretory rsponse caused by PD but enhanced the response by Ach. Adenosine treatment resulted in marked increase in CA secretion by PD or Ach. Perfusion with calcium free Krebs solution containing 5 mM EDTA for 30 minutes completely blocked the secretory effect induced by Ach and also weakened that evoked by PD. It is suggested that PD causes the secretion of CA from the rabbit adrenal gland by a calcium dependent exocytotic process. The secretory effect of PD is due to the stimulation of cholinergic muscarinic and nicotinic-receptors present in the adrenal gland partly by direct action on the chromaffin cell.

  • PDF

Mirtazapine Regulates Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine (생쥐 소장 카할세포의 pacemaker potential에서 미르타자핀 효능에 관한 연구)

  • Kim, Byung Joo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.662-670
    • /
    • 2021
  • Interstitial cells of Cajal (ICCs) are the pacemaking cells in the gastrointestinal (GI) muscles that generate the rhythmic oscillation in membrane potentials known as slow waves. In the present study, we investigated the effects of mirtazapine, a noradrenergic and serotonergic antidepressant, on pacemaking potential in cultured ICCs from the murine small intestine. The whole-cell patch-clamp configuration was used to record pacemaker potential in cultured ICCs. Mirtazapine induced pacemaker potential depolarizations in a concentration-dependent manner in the current clamp mode. Y25130 (a 5-HT3 receptor antagonist), RS39604 (a 5-HT4 receptor antagonist), and SB269970 (a 5-HT7 receptor antagonist) had no effects on mirtazapine-induced pacemaker potential depolarizations. Also, methoctramine, a muscarinic M2 receptor antagonist, had no effect on mirtazapine-induced pacemaker potential depolarizations, whereas 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), a muscarinic M3 receptor antagonist, inhibited the depolarizations. When guanosine 5'-[β-thio] diphosphate (GDP-β-S; 1 mM) was in the pipette solution, mirtazapine-induced pacemaker potential depolarization was blocked. When an external Ca2+ free solution or thapsigargin, a Ca2+-ATPase inhibitor of the endoplasmic reticulum, was applied, the generation of pacemaker potentials disappeared, and under these conditions, mirtazapine induced pacemaker potential depolarizations. In addition, protein kinase C (PKC) inhibitor, calphostin C, and chelerythrine inhibited mirtazapine-induced pacemaker potential depolarizations. These results suggest that mirtazapine regulates pacemaker potentials through muscarinic M3 receptor activation via a G protein-dependent and an external or internal Ca2+-independent PKC pathway in the ICCs. Therefore, mirtazapine can control GI motility through ICCs.

Effects of Olanzapine on the Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine (생쥐 소장 카할세포에서 발생하는 향도잡이 기능의 올란자핀 효능에 관한 연구)

  • Kim, Byung Joo
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.1010-1015
    • /
    • 2019
  • The interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal (GI) tract. In the present study, the effects of olanzapine, an atypical antipsychotic agent, on pacemaker potentials in cultured ICCs from the small intestine of the mouse were investigated. The whole-cell patch-clamp configuration was used to record pacemaker potentials from cultured ICCs. Olanzapine produced pacemaker depolarizations in a concentration-dependent manner in current clamp mode. Methoctramine, a muscarinic $M_2$ receptor antagonist, did not inhibit olanzapine-induced pacemaker depolarizations, whereas 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) muscarinic $M_3$ receptor antagonist did inhibit it. When guanosine 5'-[${\beta}$-thio] diphosphate (GDP-${\beta}$-S; 1 mM) was in the pipette solution, olanzapine-induced pacemaker depolarization was blocked. Also, low $Na^+$ solution externally eliminated the generation of pacemaker potentials and inhibited the olanzapine-induced pacemaker depolarizations. Additionally, the nonselective cation channel blocker, flufenamic acid, inhibited the olanzapine-induced pacemaker depolarizations. Pretreatment with U-73122, an active phospholipase C (PLC) inhibitor, also eliminated the generation of pacemaker potentials and suppressed the olanzapine-induced pacemaker depolarizations. These results suggested that olanzapine modulates the pacemaker potentials through muscarinic $M_3$ receptor activation by G protein-dependent external $Na^+$ and PLC pathway in the ICCs. Therefore, olanzapine could affect intestinal motility through ICCs.

Effects of Sinetrol-XPur on Leptin-Deficient Obese Mice and Activation of cAMP-Dependent UCP-2 (Leptin 유전자 결핍 동물모델을 이용한 시네트롤(Sinetrol-XPur)의 항비만 효과와 cAMP를 통한 UCP-2 활성화 기전 연구)

  • Yoo, Jae Myeong;Lee, Minhee;Kwon, Han Ol;Choi, Sei Gyu;Bae, Mun Hyoung;Kim, Ok-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2016
  • The present study investigated the effect of Sinetrol-XPur (polyphenolic Citrus spp. and Paullinia cupana Kunth dry extract) and defined the action mode for cyclic adenosine monophosphate (cAMP)-dependent uncoupling protein (UCP)-2 activation. Leptin-deficient obese mice were treated with two different doses, 100 mg/kg body weight (BW) and 300 mg/kg BW of each AIN93G supplement, for 7 weeks. Treatment of obese mice with both low and high doses of Sinetrol-XPur significantly reduced body weight gain compared to control obese mice. White adipose tissue weight of mice was reduced by 30.96% in high dose-supplemented groups. Serum total cholesterol and triglyceride were reduced by a high dose of Sinetrol-XPur by 20.02% and 30.96%, respectively. Serum level of high density lipoprotein (HDL) was significantly increased by treatment with both doses, as the ratio of HDL to low density lipoprotein increased by 138.78% and 171.49%, respectively. Regarding expression of biochemical factors related to lipid metabolism, fatty acid synthase significantly decreased and UCP-2 increased upon treatment with a high dose of Sinetrol-XPur, but there was no significant difference in lipoprotein lipase and hormone-sensitive lipase. To define cellular mechanism, intracellular cAMP levels in 3T3-L1 adipocytes significantly increased in a dose-dependent manner over the range of $50{\sim}250{\mu}m/mL$. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine clearly blocked cAMP, suggesting that Sinetrol-XPur promotes lipolysis of adipocytes through inhibition of cAMP-dependent PDE, resulting in induction of cAMP response element binding protein and UCP-2. These results suggest that Sinetrol-XPur supplementation is a viable option for reducing body weight and fat by improving serum lipid profiles and genetic expression of lipid metabolic factors, especially activation of cAMP-dependent UCP-2.