• 제목/요약/키워드: Blockage correction

검색결과 21건 처리시간 0.028초

소형 수직축 풍력발전기 풍동실험시 폐쇄율의 영향 (Effect of Blockage Ratio on Wind Tunnel Testing of Small Vertical-Axis Wind Turbines)

  • 정회갑;이승호;권순덕
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of blockage ratio on wind tunnel testing of small vertical-axis wind turbine has been investigated in this study. Height and rotor diameter of the three blades Darrieus vertical axis wind turbine used in present test were 0.4m and 0.35m respectively. We measured the wind speeds and power coefficient at three different wind tunnels where blockage ratio were 3.5%, 13.4% and 24.7% respectively. The test results show that the measured powers have been strongly influenced by blockage ratio, generally increased as the blockage ratio increases. The maximum power at higher blockage ratio has been obtained at relatively high tip speed ratio compared with that at low blockage ratio. The measured power coefficients under high blockage ratio can be improved from proper correction using the simple correction equation based on blockage factor. In present study, the correction error for power coefficient can be less than 5%, however correction effectiveness reveals relatively poor at high blockage ratio and low wind speed.

폐쇄형 풍동 시험부 내의 비정상 흐름에 대한 Blockage 보정 기법 연구 (Blockage-Correction Method for Unsteady Flows in a Closed Test-Section Wind Tunnel)

  • 강승희;권오준;안승기
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.67-74
    • /
    • 2006
  • 아음속풍동 폐쇄형 시험부내의 비정상 벽면효과 보정 연구의 일환으로 시험부 벽면압력을 사용하는 비정상 흐름에 대한 blockage 보정 기법을 개발하였다. 시험부 벽면압력은 프리에 급수로 전개하고, 전개된 각 계수를 벽면압력측정 방법을 사용하여 전 주기에 대해 일괄적으로 보정하는 준 정상상태 보정 방법을 제시하였다. 본 연구에서 제시된 방법을 검증하기 위해 수치적으로 계산된 폐쇄형 시험부내의 원형실린더 및 강제 진동하는 익형의 비정상 흐름에 적용하였다. 그 결과 본 연구에서 제시된 방법은 자유흐름 상태와 일치되는 blockage 보정 결과를 보임을 확인하였다.

폐쇄형 풍동 시험부내의 항공기 실속 흐름에 대한 Blockage 보정 기법 연구 (Blockage Correction Method for Separated Flows over an Aircraft in a Closed Test-Section Wind Tunnel)

  • 강승희;권오준;안승기
    • 한국항공우주학회지
    • /
    • 제33권8호
    • /
    • pp.42-49
    • /
    • 2005
  • 아음속풍동 폐쇄형 시험부의 벽면효과 보정을 위한 새로운 blockage 보정 기법을 개발하였다. 개발된 보정 기법은 실속항력계수와 separation blockage의 비선형 관계를 이용하여 선형 양력곡선 기울기 영역에서 후실속 영역까지 실시간으로 보정이 가능하게 하였다. 본 연구에서 제시한 방법은 bluff body 시험 결과를 사용하는 고전적 방법과 벽면압력측정 방법과 비교하여 그 타당성을 검증하였다. 그 결과 본 연구에서 제시한 보정 방법은 실속 및 후실속 영역에서 bluff body 방법보다 우수한 보정 결과를 보이며 벽면압력측정 방법과 같은 정확도로 보정됨을 확인할 수 있었다.

Wind-tunnel blockage effect on drag coefficient of circular cylinders

  • Anthoine, J.;Olivari, D.;Portugaels, D.
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.541-551
    • /
    • 2009
  • This paper explains how to correctly measure the drag coefficient of a circular cylinder in wind tunnels with large blockage ratios and for the sub-critical to the super-critical flow regimes. When dealing with large blockage ratios, the drag has to be corrected for wall constraints. Different formulations for correcting blockage effect are compared for each flow regime based on drag measurements of smooth circular cylinders performed in a wind tunnel for three different blockage ratios. None of the correction model known in the literature is valid for all the flow regimes. To optimize the correction and reduce the scatter of the results, different correction models should be combined depending on the flow regime. In the sub-critical regime, the best results are obtained using Allen and Vincenti's formula or Maskell's theory with ${\varepsilon}$=0.96. In the super-critical regime, one should prefer using Glauert's formula with G=0.6 or the model of Modi and El-Sherbiny. The change in the formulations appears at the flow transition with a variation of the wake pattern when passing from sub-critical to super-critical flow regimes. This parameter being not considered in the known blockage corrections, these theories are not valid for all the flow regimes.

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

대형 캐비테이션터널에서 몰수체 저항시험 및 위벽효과 수정 기법 연구 (Study of the Resistance Test and Wall Blockage Correction Method for the Submerged Body in LCT)

  • 안종우;설한신;박영하;김기섭
    • 대한조선학회논문집
    • /
    • 제57권3호
    • /
    • pp.133-139
    • /
    • 2020
  • In order to study the resistance test technique for the submerged body in Large Cavitation Tunnel (LCT), DARPA Suboff, submarine model publicly available was manufactured. DTRC released the resistance test data of DARPA Suboff conducted at ship speeds up to 18.0 knots in high-speed towing tank in 1990. As LCT is considered restricted waterways with walls, the resistance test results must be corrected with three wall blockage effects called buoyancy effect, solid blockage effect and wake blockage effect. Before correction, the resistance of LCT was 16~20 % higher than that of DTRC. After correction, the resistance and the resistance coefficients were compared with those of DTRC. The corrected resistance of LCT shows good agreement with that of DTRC. The residual resistance coefficient shows the difference according to the calculation method of buoyancy and frictional resistance coefficient. This paper suggests the best way for the calculation of residual resistance coefficient, On the basis of the present study, it is thought that the operating conditions for the propeller cavitation and noise tests can be drawn through LCT tests.

Wind tunnel blockage effects on aerodynamic behavior of bluff body

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • 제1권4호
    • /
    • pp.351-364
    • /
    • 1998
  • In wind tunnel experiments, the blockage effect is a very important factor which affects the test results significantly. A number of investigations into this problem, especially on the blockage correction of drag coefficient, have been carried out in the past. However, only a limited number of works have been reported on the wind tunnel blockage effect on wind-induced vibration although it is considered to be fairly important. This paper discusses the aerodynamic characteristics of the square model and square model with corner cut based on a series of the wind tunnel tests with various blockage ratios and angles of attack. From the test results, the aerodynamic behavior of square models with up to 10% blockage ratio are almost the same and square models with up to 10% blockage ratio can be tested as a group which behaves similarly.

Three-Dimensional Flow Analysis and Improvement of Slip Factor Model for Forward-Curved Blades Centrifugal Fan

  • Guo, En-Min;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.302-312
    • /
    • 2004
  • This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient.

레이더 반사도 누적 방법을 이용한 지형에 의한 부분차폐영역의 레이더 반사도 보정 (Correction of Radar Reflectivity over Beam Blocking Area by Accumulated Radar Reflectivity)

  • 박성환;정성화;이정훈;김경익
    • 한국수자원학회논문집
    • /
    • 제42권8호
    • /
    • pp.607-617
    • /
    • 2009
  • 레이더 빔 차폐는 송신된 레이더 빔이 지형 및 차폐물로 인해 부분 혹은 완전히 차단되는 현상으로 강수량 추정시 과소추정의 주된 원인이 된다. 본 연구에서는 레이더 누적반사도지도를 이용하여 지형에 의한 부분차폐영역의 반사도를 보정하였다. 누적반사도지도는 레이더 반사도를 누적하고, 공간적으로 균일한 레이더 반사도 장을 가정하여 작성하며, 빔 차폐를 분석하는데 유용한 자료이다. 차폐분석을 통해 차폐보정지도를 작성하고, 태풍과 장마 사례에 적용하여 차폐가 발생하지 않는 레이더 자료와의 평균분수오차를 분석하였다. 그 결과, 평균분수오차가 차폐보정 전에 20$\sim$35%로 나타났으나 차폐보정 후 7$\sim$10%로 감소하였다.

S밴드 이중편파레이더의 부분 빔 차폐영역 내 반사도 보정을 통한 지상강우추정 개선 (Improved Rainfall Estimation Based on Corrected Radar Reflectivity in Partial Beam Blockage Area of S-band Dual-Polarization Radar)

  • 이정은;정성화;김해림;이선기
    • 대기
    • /
    • 제27권4호
    • /
    • pp.467-481
    • /
    • 2017
  • A correction method of reflectivity in partial beam blockage (PBB) area is suggested, which is based on the combination of digital terrain information and self-consistency principle between polarimetric observation. First, the reflectivity was corrected by adding the radar energy loss estimated from beam blockage simulation using digital elevation model (DEM) and beam propagation geometry in standard atmosphere. The additional energy loss by unexpected obstacles and non-standard beam propagation was estimated by using the coefficient between accumulated reflectivity ($Z_H$) and differences of differential phase shift (${\Phi}_{DP}$) along radial direction. The proposed method was applied to operational S-band dual-polarization radar at Jindo and its performance was compared with those of simulation method and self-consistency method for six rainfall cases. When the accumulated reflectivity and increment of ${\Phi}_{DP}$ along radial direction are too small, the self-consistency method has failed to correct the reflectivity while the combined method has corrected the reflectivity bias reasonably. The correction based on beam simulation showed the underestimation. For evaluation of rainfall estimation, the FBs (FRMSEs) of simulation method and self-consistency principle were -0.32 (0.59) and -0.30 (0.57), respectively. The proposed method showed the lowest FB (-0.24) and FRMSE (0.50). The FB and FMSE were improved by about 18% and by 19% in comparison to those before correction (-0.42 and 0.70). We can conclude that the proposed method can improve the accuracy of rainfall estimation in PBB area.