• 제목/요약/키워드: Block-based Evaluation

검색결과 301건 처리시간 0.017초

Evaluation of Metal-Amino Acid Chelates and Complexes at Various Levels of Copper and Zinc in Weanling Pigs and Broiler Chicks

  • Lee, S.H.;Choi, S.C.;Chae, B.J.;Lee, J.K.;Acda, S.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권12호
    • /
    • pp.1734-1740
    • /
    • 2001
  • Feeding trials using weanling pigs and broiler chicks were conducted to evaluate the efficacy of different metal-amino acid chelates and complexes at various levels of copper and zinc on the performance and fecal excretions. A total of 200 weanling pigs (Large White ${\times}$ Yorkshire ${\times}$ Duroc, $11.20{\pm}0.81kg$) were randomly assigned to 5 dietary treatments following a randomized complete block design. Each treatment was replicated 4 times with 10 pigs per pen. The dietary treatments were designated as : A-diet containing 170 ppm Cu from $CuSO_4$ and 120 ppm Zn from $ZnSO_4$, B-diet containing 85 ppm Cu from Cu-amino acid chelate (CAC) and 60 ppm Zn from Zn-amino acid chelate (ZAC), C-diet containing 170 ppm Cu from CAC and 120 ppm Zn from ZAC, D-diet containing 85 ppm Cu from Cu-lysine complex (CL) and 60 ppm Zn from Zn-methionine complex (ZM), and E-diet containing 170 ppm Cu from CL and 120 ppm Zn from ZM. On the other trial, 144 of one day old broiler chicks were randomly distributed to 6 dietary treatments following a completely randomized design. Each treatment was replicated 3 times with 8 chicks per replicate. The dietary treatments were as follows: 1-diet with 60 ppm Cu from $CuSO_4$ and 40 ppm Zn from $ZnSO_4$, 2-diet with 120 ppm Cu from $CuSO_4$ and 80 ppm Zn from $ZnSO_4$, 3-diet with 60 ppm Cu from CAC and 40 ppm Zn from ZAC, 4-diet with 120 ppm Cu from CAC and 80 ppm Zn from ZAC, 5-diet with 60 ppm Cu from CL and 40 ppm Zn from ZM, and 6-diet with 120 ppm Cu from CL and 80 ppm Zn from ZM. In Exp. 1 with pigs, there was no difference on average daily gain and average daily feed intake observed among treatments. There was improvement (p<0.05) on the overall feed conversion ratio (FCR) of pigs fed diet containing 120 ppm Zn and 170 ppm Cu from metal-amino acid chelates relative to those fed diet containing inorganic sources of Cu and Zn but equally efficient as those fed diet containing metal-amino acid complexes. Pigs fed diet containing either metal-amino acid chelates or complexes as sources of Cu and Zn had higher (p<0.05) Cu and Zn concentration in serum and lower (p<0.05) in feces than those receiving diet with inorganic sources. In Exp. 2 with broiler chicks, the overall FCR was not different among treatments. Higher (p<0.05) Cu and Zn concentration in serum was obtained from birds fed diet with 60 ppm Cu and 40 ppm Zn from metal-amino acid chelates compared to those fed diet with inorganic sources of Cu and Zn. Also, the feces collected from birds fed diet with either metal-amino acid chelates or complexes contained generally lower Cu and Zn than those birds fed diet with inorganic sources. The higher the dietary level of Cu and Zn the higher the Cu and Zn concentration in the feces. Based on the results, both metal-amino acid chelates and complexes of Cu and Zn at low levels (Zn 60 ppm, Cu 85 ppm for weanling pigs and Zn 40 ppm, Cu 60 ppm for broiler chicks) are not different from that of high levels of inorganic sources in maintaining growth performance and serum concentration. The fecal excretions for Cu and Zn were greatly reduced when organic sources were used.