• Title/Summary/Keyword: Block encryption

Search Result 304, Processing Time 0.028 seconds

Optimization of Lightweight Encryption Algorithm (LEA) using Threads and Shared Memory of GPU (GPU의 스레드와 공유메모리를 이용한 LEA 최적화 방안)

  • Park, Moo Kyu;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.719-726
    • /
    • 2015
  • As big-data and cloud security technologies become popular, many researchers have recently been conducted on faster and lighter encryption. As a result, National Security Research Institute developed LEA which is lightweight and fast block cipher. To date, there have been various studies on lightweight encryption algorithm (LEA) for speeding up using GPU rather than conventional CPU. However, it is rather difficult to explore any guideline how to manipulate the GPU for the efficient usage of the LEA. Therefore, we introduce a guideline which explains how to implement and design the optimal LEA using GPU.

The cryptographic module design requirements of Flight Termination System for secure cryptogram delivery (안전한 보안명령 전달을 위한 비행종단시스템용 암호화 장치 설계 요구사항)

  • Hwang, Soosul;Kim, Myunghwan;Jung, Haeseung;Oh, Changyul;Ma, Keunsu
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.114-120
    • /
    • 2015
  • In this paper, we show the design requirements of the cryptographic module and its security algorithm designed to prevent the exposure of the command signal applied to Flight Termination System. The cryptographic module consists of two separate devices that are Command Insertion Device and Command Generation Device. The cryptographic module designed to meet the 3 principles(Confidentiality, Integrity and Availability) for the information security. AES-256 block encryption algorithm and SHA-256 Hash function were applied to the encrypted symmetric key encryption method. The proposed cryptographic module is expected to contribute to the security and reliability of the Flight Termination System for Space Launch Vehicle.

Implementation of Spread Spectrum FTS Encoder/Decoder (대역확산방식 FTS 인코더/디코더 구현)

  • Lim, You-Chol;Ma, Keun-Soo;Kim, Myung-Hwan;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.179-186
    • /
    • 2009
  • This paper describes the design and implementation for spread spectrum FTS encoder and decoder. The FTS command format is defined by 64 bit encrypted packet that contains all required information relayed between the ground and the vehicle. Encryption is accomplished using the Tripple-DES encryption algorithm in block encryption form. The proposed FTS encoder and decoder is using the Convolution Encoding and Viterbi Decoding for forward error correction. The Spread Spectrum Modulation is done using a PN code, which is 256 bit gold code. The simulation result shows that the designed FTS decoder is compatible with the designed FTS encoder.

  • PDF

Development of field programmable gate array-based encryption module to mitigate man-in-the-middle attack for nuclear power plant data communication network

  • Elakrat, Mohamed Abdallah;Jung, Jae Cheon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.780-787
    • /
    • 2018
  • This article presents a security module based on a field programmable gate array (FPGA) to mitigate man-in-the-middle cyber attacks. Nowadays, the FPGA is considered to be the state of the art in nuclear power plants I&C systems due to its flexibility, reconfigurability, and maintainability of the FPGA technology; it also provides acceptable solutions for embedded computing applications that require cybersecurity. The proposed FPGA-based security module is developed to mitigate information-gathering attacks, which can be made by gaining physical access to the network, e.g., a man-in-the-middle attack, using a cryptographic process to ensure data confidentiality and integrity and prevent injecting malware or malicious data into the critical digital assets of a nuclear power plant data communication system. A model-based system engineering approach is applied. System requirements analysis and enhanced function flow block diagrams are created and simulated using CORE9 to compare the performance of the current and developed systems. Hardware description language code for encryption and serial communication is developed using Vivado Design Suite 2017.2 as a programming tool to run the system synthesis and implementation for performance simulation and design verification. Simple windows are developed using Java for physical testing and communication between a personal computer and the FPGA.

CDMA Digital Mobile Communications and Message Security

  • Rhee, Man-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.4
    • /
    • pp.3-38
    • /
    • 1996
  • The mobile station shall convolutionally encode the data transmitted on the reverse traffic channel and the access channel prior to interleaving. Code symbols output from the convolutional encoder are repeated before being interleaved except the 9600 bps data rate. All the symbols are then interleaved, 64-ary orthogonal modulation, direct-sequence spreading, quadrature spreading, baseband filtering and QPSK transmission. The sync, paging, and forward traffic channel except the pilot channel in the forward CDMA channel are convolutionally encoded, block interleaved, spread with Walsh function at a fixed chip rate of 1.2288 Mcps to provide orthogonal channelization among all code channels. Following the spreading operation, the I and Q impulses are applied to respective baseband filters. After that, these impulses shall be transmitted by QPSK. Authentication in the CDMA system is the process for confirming the identity of the mobile station by exchanging information between a mobile station and the base station. The authentication scheme is to generate a 18-bit hash code from the 152-bit message length appended with 24-bit or 40-bit padding. Several techniques are proposed for the authentication data computation in this paper. To protect sensitive subscriber information, it shall be required enciphering ceratin fields of selected traffic channel signaling messages. The message encryption can be accomplished in two ways, i.e., external encryption and internal encryption.

Security of OFB mode and 3GPP f8 encryption mode (OFB 모드와 3GPP f8 암호화 모드의 안전성)

  • 신상욱;홍도원;강주성;이옥연
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.4
    • /
    • pp.55-66
    • /
    • 2001
  • In this paper, we analyze the security of OFB encryption mode which is one of the basic modes of operation for the block cipher and the security of 3GPP f8 encryption mode used to provide the data confidentiality over a radio access link of W-CDMA IMT-2000. We provide the lower bound and the upper bound on security of both modes in random function model and random permutation model, respectively, by means of the left-or-right security notion, and prove the security of both modes using a pseudorandom function and a pseudorandom permutation, respectively.

Forgery Attack on New Authenticated Encryption (새로운 인증-암호화 모드 NAE에 대한 위조 공격)

  • Jeong, Ki-Tae;Lee, Chang-Hoon;Sung, Jae-Chul;Eun, Hi-Chun;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.103-107
    • /
    • 2007
  • This paper represents a forgery attack on new authenticated encryption mode $NAE^{[1]}$ which was proposed at JCCI 2003. NAE is a new authenticated encryption mode which is combined with CFB mode and CTR mode. And it provides confidentiality. In this paper, we show that it is possible to make a valid ciphertext-tag pair only by modifying a ciphertext.

Power Analysis Attack of Block Cipher AES Based on Convolutional Neural Network (블록 암호 AES에 대한 CNN 기반의 전력 분석 공격)

  • Kwon, Hong-Pil;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.14-21
    • /
    • 2020
  • In order to provide confidential services between two communicating parties, block data encryption using a symmetric secret key is applied. A power analysis attack on a cryptosystem is a side channel-analysis method that can extract a secret key by measuring the power consumption traces of the crypto device. In this paper, we propose an attack model that can recover the secret key using a power analysis attack based on a deep learning convolutional neural network (CNN) algorithm. Considering that the CNN algorithm is suitable for image analysis, we particularly adopt the recurrence plot (RP) signal processing method, which transforms the one-dimensional power trace into two-dimensional data. As a result of executing the proposed CNN attack model on an XMEGA128 experimental board that implemented the AES-128 encryption algorithm, we recovered the secret key with 22.23% accuracy using raw power consumption traces, and obtained 97.93% accuracy using power traces on which we applied the RP processing method.

An Efficient Hardware Implementation of ARIA Block Cipher Algorithm Supporting Four Modes of Operation and Three Master Key Lengths (4가지 운영모드와 3가지 마스터 키 길이를 지원하는 블록암호 알고리듬 ARIA의 효율적인 하드웨어 구현)

  • Kim, Dong-Hyeon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2517-2524
    • /
    • 2012
  • This paper describes an efficient implementation of KS(Korea Standards) block cipher algorithm ARIA. The ARIA crypto-processor supports three master key lengths of 128/192/256-bit and four modes of operation including ECB, CBC, OFB and CTR. A hardware sharing technique, which shares round function in encryption/decryption with key initialization, is employed to reduce hardware complexity. It reduces about 20% of gate counts when compared with straightforward implementation. The ARIA crypto-processor is verified by FPGA implementation, and synthesized with a $0.13-{\mu}m$ CMOS cell library. It has 46,100 gates on an area of $684-{\mu}m{\times}684-{\mu}m$ and the estimated throughput is about 1.28 Gbps at 200 MHz@1.2V.

A Design of AES-based CCMP Core for IEEE 802.11i Wireless LAN Security (IEEE 802.11i 무선 랜 보안을 위한 AES 기반 CCMP Core 설계)

  • Hwang Seok-Ki;Lee Jin-Woo;Kim Chay-Hyeun;Song You-Soo;Shin Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.798-803
    • /
    • 2005
  • This paper describes a design of AES(Advanced Encryption Standard)-based CCMP core for IEEE 802.1li wireless LAN security. To maximize its performance, two AES cores ate used, one is for counter mode for data confidentiality and the other is for CBC(Cipher Block Chaining) mode for authentication and data integrity. The S-box that requires the largest hardware in AES core is implemented using composite field arithmetic, and the gate count is reduced by about $20\%$ compared with conventional LUT(Lookup Table)-based design. The CCMP core designed in Verilog-HDL has 13,360 gates, and the estimated throughput is about 168 Mbps at 54-MHz clock frequency. The functionality of the CCMP core is verified by Excalibur SoC implementation.