• Title/Summary/Keyword: Blended coals

Search Result 8, Processing Time 0.026 seconds

Combustion Characteristics of Blended Coals with Bituminous and Sub-bituminous in Oxy-fuel Combustion Conditions (순산소연소 조건에서 역청탄과 아역청탄 혼탄의 연소특성)

  • Sung, Yon-Mo;Moon, Cheor-Eon;Ahn, Seong-Yool;Kim, Seung-Il;Seo, Sang-Il;Kim, Tae-Hyung;Jeong, Ji-Hwan;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • This paper focuses on the combustion characteristics of blended coals with bituminous and sub-bituminous coals under air and oxy-fuel combustion conditions. The effects of oxygen concentration and blending ratio on the combustion characteristics were experimentally investigated using a thermogravimetric analyser (TGA). Characteristic temperatures including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. As oxygen concentration increased and the presence of sub-bituminous coal, characteristic temperatures and activation energy decreased. The ignitability, reactivity and kinetics have all been greatly improved under oxy-fuel combustion conditions. Based on this, co-firing with bituminous and sub-bituminous coals under oxy-fuel combustion conditions may be suggested as an alternative method to the fuel flexibility and cost-effective power production with carbon capture and sequestration.

Effect of Particle size and Blending Ratio on Thermo Reaction and Combustion Characteristics in Co-firing with Bituminous and Sub-bituminous Coals (역청탄과 아역청탄 혼합연소조건에서 입자크기와 혼소율이 열물성반응과 연소특성에 미치는 영향)

  • Sung, Yon-Mo;An, Jae-Woo;Moon, Cheor-Eon;Ahn, Seong-Yool;Kim, Sung-Chul;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.65-73
    • /
    • 2010
  • In order to provide fundamental information for developing reaction model in the practical blended coal power plants, effects of particle size and blending ratio on combustion characteristics and thermal reaction in co-firing with bituminous and sub-bituminous coals were experimentally investigated using a TGA and a laboratory-scale burner. Characteristic parameters including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. Distributions of flame length and mean particle temperature were investigated from the visualization of flames in slit-burner system. As coal particle size decreased and volatile matter content increased, characteristic temperatures and activation energy decreased. The ignition/burnout characteristics and activation energy are linearly influenced by a variation in particle size and blending ratio. These results indicated that the control of the coal blending ratio can improve the combustion efficiency for sub-bituminous coals and the ignition characteristics for bituminous coals.

Derivation of TMA Slagging Indices for Blended Coals

  • Park, Ho Young;Baek, Se Hyun;Kim, Hyun Hee;Park, Sang Bin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.127-131
    • /
    • 2017
  • The present paper describes the slagging field data obtained with the one-dimensional process model for the 500 MW tangentially coal fired boiler in Korea. To obtain slagging field data in terms of thermal resistances [$m^2{\cdot}^{\circ}C/kW$], a number of plant data were collected and analyzed with the one-dimensional modelling software at 500 MW full load. The slagging field data for the primary superheater were obtained for six coal blends, and compared with two TMA (Thermo-Mechanical analyzer) slagging indices and the numerical slagging index, along with the conventional slagging indices which were modified with the ash loading. The advanced two TMA indices for six blended coals give a good slagging tendency when comparing them with the slagging field data, while the modified conventional slagging indices give a relatively poor agreement.

The evaluation of combustion characteristics for 2 kinds of Indonesian sub-bituminous coals by using combustion test facility at KEPRI (시험연소로를 이용한 인도네시아산 아역청탄 2종의 연소특성 평가)

  • Lee, Hyun-Dong;Kim, Sung-Chul;Kim, Jong-Jin;Kim, Tae-Heung;Yang, Seung-Han;Shin, Young-Jin;Min, Chang-Gi
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.27-46
    • /
    • 1999
  • Combustion test on two kinds of Indonesian sub-bituminous coals of single and blended with bituminous coal imported for power generation was carried out by using the test furnace at KEPRI. The main items of combustion test were temperature profiles of the inside furnace, the yield of unburned carbon, environmental pollution emissions, slagging/fouling tendency, and the comparison of heat loss of furnace. The test results showed that low sulfur and ash content characterized by the Indonesian coals were advantageous to environmental aspect, but high tendency of heat loss and slagging/fouling were disadvantageous to boiler operation. From the results, the necessity of proper coal blending to compensate these weak points was recommended.

  • PDF

An Experimental Study on Combustion Behavior of Different Ranks of Coals and Their Blends (저등급탄과 혼탄의 연소거동에 관한 실험적 연구)

  • Moon, Cheoreon;Sung, Yonmo;Ahn, Seongyool;Kim, Taekyung;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.205-208
    • /
    • 2012
  • In this study, the thermal behavior and combustion characteristics of different ranks of coals and their blends were investigated to obtain information necessary for the evaluation of the co-processing of blends with low-rank coals. Thermogravimetric analysis(TGA) and differential thermal analysis(DTA) were carried out at different temperature from ambient temperature to $800^{\circ}C$, and a laboratory-scale pulverized coal combustion burner was used with coal feeing rate of $1.04{\times}10^{-4}kg/s$.

  • PDF

Investigation of Tar/soot Yield of Bituminous and Low Rank Coal Blends (발전용 역청탄과 저열량탄 혼소시 Tar/Soot의 배출 특성 연구)

  • Lee, Byung Hwa;Kim, Jin Ho;Kim, Gyu Bo;Kim, Seng Mo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.42-48
    • /
    • 2014
  • Soot and tar which were derived from combustion or pyrolysis processes in Puverized Coal(PC) furnace or boiler have been significantly dealing in a radiative heat transfer and an additional source of NOx. Furthermore, the increasing for the use of a coal with low caloric value gives rise to a lot of tar-soot yield and LOI in a recycled ash for using cement materials. So, the ash with higher tar-soot yield and LOI can not recycle due to decreased strength of concrete. In this study, tar-soot yields and flame structures were investigated using the LFR for a blending combustion with bituminous coal and sub-bituminous coal. Also, The investigation were conducted as each single coals and blending ratio. The coals are used in a doestic power plant. In the experimental results, sub-bituminous coal with high volatile contents shows longer soot cloud length than bituminous coal, but overall flame length was shorter than bituminous coal. Tar-soot yields of sub-bituminous coal is lower than those of bituminous coal. Combustion characteristics are different between single coal and blended coal. Therefore, finding an optimal coal blending ratio according to coal rank effects on tar-soot yields.

Group Separation of Water-soluble Organic Carbon Fractions in Ash Samples from a Coal Combustion Boiler

  • Park, Seung-Shik;Jeong, Jae-Uk;Cho, Sung-Yong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • The chemical characterization of water-soluble organic carbon in ash emitted from a coal combustion boiler has not been reported yet. A total of 5 ash samples were collected from the outlet of an electrostatic precipitator in a commercial 500 MW coal-fired power plant, with their chemical characteristics investigated. XAD7HP resin was used to quantify the hydrophilic and hydrophobic water-soluble organic carbons (WSOC), which are the fractions of WSOC that penetrate and remain on the resin column, respectively. Calibration results indicate that the hydrophilic fraction includes aliphatic dicarboxylic acids and carbonyls (<4 carbons), amines and saccharides, while the hydrophobic fraction includes aliphatic dicarboxylic acids (>4-5 carbons), phenols, aromatic acids, cyclic acid and humic acid. The average mass of the WSOC in the ash samples was found to depend on the bituminous coal type being burned, and ranged from 163 to 259 ${\mu}g$ C/g of ash, which corresponds to 59-96 mg C of WSOC/kg of coal combusted. The WSOC mass accounted for 0.02-0.03 wt% of the used ash sample mass. Based on the flow rate of flue gas produced from the combustion of the blended coals in the 500 MW coal combustion boiler, it was estimated that the WSOC particles were emitted to the atmosphere at flow rates of 4.6-7.2 g C/hr. The results also indicated that the hydrophilic WSOC fraction in the coal burned accounted for 64-82% of the total WSOC, which was 2-4 times greater than the mass of the hydrophobic WSOC fraction.

Combustion Characteristics for Co-firing of Biomass (Walnut Shell) (바이오매스(호두껍질) 혼소에 대한 연소 특성에 관한 연구)

  • Kim, Jin-Ho;Lee, Byoung-Hwa;Sh, Lkhagvadorj;Kim, Sang-In;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.53-59
    • /
    • 2015
  • Combustion characteristics for co-firing of biomass (Walnut Shell) as blending fuel in coal fired boiler have investigated using thermogravimetric analyser (TGA) and drop tube reactor (DTR). The results show that devolatilization and char combustion for WS occurs at lower temperature than those of existing coals and has lower activation energy value, which is resulting in higher reactivity. When the WS is blended with coal, TGA results show linear profiles depending on blending ratio for each fuel. However, DTR results exist the non-additive phenomena for blending of WS. As blending ratio of WS increase, the UBC decrease at BBR 5%, but the UBC rather increase from BBR 10% due to oxygen deficiency formed from rapid combustion of WS. This paper propose that fuel lean condition by oxygen rich lead to higher blending ratio of biomass by solving the oxygen deficiency condition.