• Title/Summary/Keyword: Blended Ratio

Search Result 413, Processing Time 0.021 seconds

Evaluation of Long-Term Performance of Concrete Blended with Industrial Waste(Oyster Shell) (산업폐기물(굴패각)을 혼입한 콘크리트의 장기성능 평가)

  • 김학모;양은익;이성태;정용일;최중철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.227-232
    • /
    • 2002
  • To evaluate the practical application of oyster shells as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells Is appreciably lower than that of normal concrete. 1'hereby, concrete with higher oyster shell has the possibility giving a bad influence on the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture ratio increases. Namely, the modulus is reduced by approximately 10∼15% when oyster shells are blended up to 20% replacing the fine aggregate. The drying shrinkage strain increases as the blending ratio increases. In addition, the existing model code of drying shrinkage does not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on freezing and thawing resistance, carbonation and sulfuric acid attack of concrete recycling. However, water permeability is considerably improved.

  • PDF

Washing Treatment Effects on Cotton and Kenaf Blend Fabrics (면섬유와 케나프섬유를 혼방한 직물과 편성물에 대한 워싱 처리 효과)

  • Lee, Hye-Ja;Yoo, Hye-Ja;Lim, Hee-Jeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.448-458
    • /
    • 2010
  • Kenaf has a rigid and rough touch that inhibits the use of it as a textile material; therefore, this study developed a novel textile material using kenaf. Kenaf and cotton were blended in the ratio of 3:7 and manufactured as 20' spun yarn that was compared to 20's spun yarn made of 100% cotton. Both kenaf/cotton-blended and 100% cotton spun yarn were constructed as plain woven and knitted fabrics. Four kinds of fabrics were prepared as follows. Plain kenaf/cotton-woven fabrics, plain cotton-woven fabrics, kenaf/cotton jersey, and cotton jersey. A cellulase washing process was carried out to reduce the character of kenaf/cotton-blended fabrics, rigid, and rough touch. All fabrics were pretreated with NaOH. NaOH at the concentrations of 0, 0.25, 1.25, and 2.25mol/L, and cellulase at concentrations of 0, 1, 3 and 5g/L were used since the pretreatment of NaOH has a higher efficiency of weight loss than $Na_2CO_3,\;K2CO_3$ and Triton X-100. The ratio of weight loss, tensile strength, stiffness, drape property, and surface appearance were measured in order to evaluate the efficiency of the washing treatment on fabrics. Kenaf/cotton-blended fabrics exhibited more rigid and rough features than cotton fabrics. A cotton jersey showed significant differences in the degree of stiffness and drape properties. When all fabrics were treated with 1.25mol/L of NaOH and 3g/L of cellulase, kenaf/cotton-blended fabrics showed a higher retention ratio of tensile strength than cotton fabrics after washing despite the increased weight l08s of kenaf-blended fabrics compared to cotton fabrics. The ratio of weight loss for all fabrics was well correlated with flexibility. The washing treatment process made woven fabrics more flexible than knitted fabrics, because the stiffness of woven fabrics made the rubbing actions stronger. Kenaf/cotton-blended fabrics showed a significantly higher ratio of weight loss and more reduction in stiffness than cotton fabrics after the washing treatment. This might be due to the lack of cohesiveness and easy elimination from fabrics. The drape property of kenaf-blended fabrics was superior to cotton fabrics.

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Go, Dae-Gwon;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.72-79
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

  • PDF

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Dae-Kwon Ko;Soo-Kil Ahn
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.26-26
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

The Effect of Draw Solution Concentration on Forward Osmosis Desalination Performance Using Blended Fertilizer as Draw Solution (유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 담수화 성능에 대한 유도용액 농도의 영향)

  • Jeong, Namjo;Kim, Seung-Geon;Kim, Dong Kook;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.343-351
    • /
    • 2013
  • This study is to investigate the effects of the draw solution concentration on forward osmosis desalination performance using blended fertilizer as draw solution. As the concentration of blended fertilizer solution (draw solution) increased, the water permeate flux increased nearly linearly, but PR (performance ratio) was reduced. Using sea water and deionized water as the feed solution, respectively, at the blended fertilizer solution of 600 g/L $H_2O$, the PR obtained were 5.39 and 6.50, respectively. And as the concentration of blended fertilizer solution increased, the reverse solute flux for nitrogen (N), phosphorus (P), and potassium (K) increased nearly linearly, but specific reverse solute flux for them was reduced. The reverse solute flux and specific reverse solute flux became higher in the order of N > K > P.

Fuel properties of biodiesel produced from beef-tallow and corn oil blends based on the variation in the fatty acid methyl ester composition

  • Woo, Duk Gam;Kim, Tae Han
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.941-953
    • /
    • 2019
  • Biodiesels are being explored as a clean energy alternative to regular diesel, which causes pollution. In this study, the optimum conditions for producing biodiesel (BD) by combining beef tallow, an animal waste resource with a high saturated fatty acid content, and corn oil, a vegetable oil with a high unsaturated fatty acid content, were investigated, and the fuel properties were analyzed. Furthermore, Multivariate Analysis of Variance (MANOVA) was used to verify the optimum conditions for producing biodiesel. The influences of control factors, such as the oil blend ratio and methanol to oil molar ratio, on the fatty acid methyl ester and biodiesel production yield were investigated. As a result, the optimum condition for producing blended biodiesel was verified to be tallow to corn oil blend ratio of 7 : 3 (TACO7) and a methanol to oil molar ratio of 14 : 1. Moreover, the interaction between the oil blend ratio and the methanol to oil molar ratio has the most crucial effects on the production of oil blended biodiesel. In conclusion, the analysis results of the fuel properties of TACO7 BD satisfied the BD quality standard, and thus, the viability of BD blended with waste tallow as fuel was verified.

Effect of Soybean Lecithin on the Thermal Oxidation of Tocopherol in Blended Oil (혼합유중(混合油中) Tocopherol의 열산화(熱酸化)에 미치는 대두(大豆) Lecithin의 효과(效果))

  • Chang, Hyun-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 1993
  • The blended oil was prepared from cottonseed oil and palm olien. The oxidative stability of blended oil after the addition of natural tocopherol and soybean lecithin during heating was investigated and the effects of lecithin were evaluated. The result obtained were as follows: 1. When the concentration of palm olein in blended oil during heating was increased, the oxidative stability was improved. 2. By both addition of natural tocopherol and soybean lecithin during heating in blended oil, induction period was considerably increased and residual ratio of tocopherol was high. 3. The oxidative stability of potato chips prepared from blended oil was higher in the prsence of lecithin than in the absence of it.

Physical Properties of Ultrafine Ash Blended Cement (초미분말 애시를 혼합한 시멘트의 물성)

  • Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.489-495
    • /
    • 2007
  • Effects of ultrafinely ground ash on the rheological properties of cement paste were investigated. Also compressive strength development and setting time of ultrafine ash blended cement mortar were investigated in the study. A sample with silica fume was included for comparison. According to the results of ultra fine ash blended cement paste in the lower W/B ratio, the fluidity were high, and the setting time was a little retarded. And the compressive strength of ultrafine ash blended mortar was increased in the long term. In the case of hardened cement paste at 28 days, $Ca(OH)_2$ contents was decreased in order of control, ultrafine ash, silica fume blended cement due to difference of the pozzolanic reaction.

Effect of Methanol-Gasoline Blended Fuel on Engine Performance and Reduction of Exhaust Emissions (메탄올-가솔린 혼합연료가 엔진성능과 배출물저감에 미치는 영향)

  • 조행묵;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.61-65
    • /
    • 2004
  • This paper presents the effect of methanol blended fuel on the engine performance and the reduction of exhaust emissions. In this wort, the combustion effects of methanol blended fuel in the engine was investigated for the conditions of three kinds of mixing ratios. Based on the experimental results, the output characteristics of the engine show the improvement of output performance due to the blended fuel of methanol. Also, the unburned hydrocarbon and carbon monoxide emissions are decreased in accordance with the increase of methanol blended ratio.

Oxidative Stability of Blended Rapeseed Oil for Instant Ramyon Manufacturing (라면 제조를 위한 혼합 유채유의 산화 안정성)

  • Yang, Joo-Hong;Chang, Yong-Sang;Shin, Hyo-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.7-13
    • /
    • 1987
  • A preliminary investigation was performed to evaluate the possibility of partially replacing palm oil and beef tallow by rapeseed oil for frying oils of instant Ramyon manufacturing. The AOM stability of rapeseed oil was inferior than of palm oil, but was comparable to that of beef tallow. When rapeseed oil was blended with palm oil or beef tallow, the AOM stability of the blended oil was improved. As far as AOM stability is concerned, best results were obtained with a blending ratio of 3 part of rapeseed oil to 7 part of palm oil and a ratio of 4 part of rapeseed oil to 6 part of beef tallow. These blended rapesee oils was retarded the formation of conjugated dienes and polymers during heating. The antioxidative effects on the stabilities of AOM and thermal in blended rapeseed oils showed that TBHQ was superior to tocopherols and a mixture of BHA and BHT was inferior.