• Title/Summary/Keyword: Blastocyst transfer

Search Result 550, Processing Time 0.026 seconds

Parthenogenetic Activation and Development of Freshly Matured Bovine IVM Oocytes (체외성숙 직후 소 난포란의 단위발생과 체외발육능)

  • 정희태;임석기;오세훈;박춘근;양부근;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • This study was conducted to investigate the activation condition of freshly matured bovine IVM oocytes for use as a cytoplasmic recipient in nuclear transfer. Bovine oocytes matured in vitro for 22-24 h were treated with various activation conditions. In Experiment 1 in vitro matured oocytes were treated with electric stimuIus (ES; 2 pulses of 1.25 kV/cm for 70 ${\mu}{\textrm{s}}$ec, each pulse 1 sec apart), ethanol (ET; 7%, 5min) , Ca$^2+$-ionophore(A23187; 10$\mu\textrm{g}$/ml, 5min) and cycloheximide(CH; 10$\mu\textrm{g}$/ml, 6 h). Activation rates were similar in treatments with ES, ET and A23187(48.8~54.3%), however, significantly reduced with CH treatment(15.9%, P

  • PDF

Rho-associated Kinase is Involved in Preimplantation Development and Embryonic Compaction in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Park, Hum-Dai;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through ${\beta}$-catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.

Effect of In Vitro Maturation Time of Porcine Immature Oocytes on the Subsequent Development and Hatching after In Vitro Fertilization (돼지 미성숙 난자의 체외 성숙 시간이 배 발생과 부화에 미치는 영향)

  • Kim J.Y.;Park H.;Kim J.M.;Lee J.H.;Park Y.S.;Kwak D.S.;Park H.D.
    • Journal of Embryo Transfer
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • This study was conducted to investigate the effect of in vitro maturation (IVM) duration of porcine follicular oocytes on maturation rate, polyspermic rate, and subsequent embryo development. The nuclear maturation rates of oocytes matured for 36, 38, 40, 42 and 44 hr were similar between 68.0, 78.0, 79.5, 73.8 and 81.8% respectively. There was no significant difference in the rates of polyspermy after in vitro feritilization (IVF). The cleavage rate in the group of 36 hr was significantly higher in than that of 40, 44 hr (p<0.05) but not to 38 and 42 hr. The development rate to blastocyst stage was significantly higher in the group of 38 hr (23.1%) than that in the group of 44 hr (15.6%) (p<0.05) but not to 36, 40 and 42 hr. These results suggest that the aged oocytes for 44 hr is not required for the production of bias to cysts derived from porcine IVF embryos.

Effects of Sperm Motility on In Vitro Production of Embryo and Correlation with Mitochondria Amount in Pig

  • Chung, Ki-Hwa;Kim, In-Cheul;Son, Jung-Ho
    • Journal of Embryo Transfer
    • /
    • v.25 no.4
    • /
    • pp.263-266
    • /
    • 2010
  • Prediction of semen's fertilizing ability used in artificial insemination (AI) is one of very important factors on pig reproductive performance. In vitro fertilization (IVF) has been used for indirect evaluation of sperm's fertilizing ability and it has been showed as highly correlated index. In swine industry, increasing interest in preservation of boar semen raises questions on the sperm motility from semen used in commercial AI centers. Mitochondria in sperm mid-piece generate the energy to support motility and could be an explanation of impaired fertility. Objective of this study was to suggest usable sperm motility to farms in measuring the effect of sperm motility and sperm abnormality on in vitro production of embryo in which sperm's fertilizing ability can be determined indirectly. Semen samples were provided from local AI center and used within 3 days after collection. Semen samples were divided by 4 different motile groups (>70%; 61~70%; 51~60%; <50%) using CASA (computer-assisted sperm analysis) on the days of IVF. Developmental rate to the blastocyst stage from over 61% motile sperm group showed significantly higher rate than below 60% motile sperm group ($16.5{\pm}0.7{\sim}18.4{\pm}0.8%$ vs $6.3{\pm}0.8{\sim}11.5{\pm}0.7%$, p<0.05). In experiment to determine the relationship between sperm motility and viability and abnormality, over 61% motile sperm groups showed significantly higher viability rate compared to below 60% motile sperm groups ($84.8{\pm}4.0{\sim}88.1{\pm}4.0%$ vs $69.1{\pm}4.0{\sim}74.2{\pm}4.0%$, p<0.05). On the other hand, morphological sperm abnormality showed significantly higher in over 70% motile sperm group ($10.2{\pm}2.2$ vs $16.0{\pm}2.2{\sim}21.0{\pm}2.2%$, p<0.05). In experiment to find the correlation between sperm motility of 4 different motile groups and amount of mitochondria, lower motility group also showed lower level of mitochondria (p<0.05). The mitochondria parameter used in this study showed another possibility to differentiate the sperm motility. Taken together, because below 60% motile semen used in AI reduce the fertility, AI centers should provide the over 60% motile sperm to the farms at the time of AI.

Glutathione (GSH) Concentration and Developmental Competence of Korean Native Cow Oocytes Selected by Brilliant Cresyl Blue (BCB)

  • Lee, Hyo-Sang;Yu, Dae-Jung;Kwon, Tae-Hyeon;Cho, Su-Jin;Bang, Jae-Il;Park, Sang-Guk;Cho, Sung-Kyun;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • This study was carried out to evaluate the nuclear, cytoplasmic maturation and developmental potential of bovine oocytes selected by brilliant cresyl blue (BCB) as indirect measurement of oocytes growth phase. Cumulus-oocyte complexes (COCs) were collected from 2 to 8 mm follicles from slaughterhouse Hanwoo ovaries. The COCs were divided into stained cytoplasm to blue (BCB+) and unstained (BCB-) according to their ooplasm BCB coloration stained by $26{\mu}m$ of BCB after 90 min. Selected COCs were cultured in a TCM 199 for 18 to 26 h. Nuclear maturation and total cell number was evaluated after in vitro maturation (IVM) or in vitro culture (IVC) using $10{\mu}g/ml$ Hoechst 33342, and cytoplasmic maturation was evaluated by intracellular glutathione (GSH) assay before (0 h) and after (24 h) IVM. The oocyte diameters were not differed significantly between BCB+ ($157.4{\pm}5.8{\mu}m$) and BCB+ ($149.0{\pm}31.0{\mu}m$) groups (p>0.05). However, the proportion of metaphase II oocytes in BCB+ group was significantly higher than BCB- group after IVM (p<0.05). GSH content of BCB+ group oocytes was significantly higher than that of BCB- group just after collection ($7.3{\pm}0.6$ vs. $4.8{\pm}0.6\;pmol/oocyte$, p<0.05), but not varied after IVM($13.1{\pm}0.9$ and $12.6{\pm}2.5\;pmol/oocytes$ for BCB+ and BCB- respectively; p>0.05). The proportion of blastocyst formation and total cell number in BCB+ group (23.5% and $105.5{\pm}28.6$) was significantly higher than that in BCB- (9.8% and $72.4{\pm}26.1$; p<0.05). The results indicate that BCB+ group oocytes may provide a cellular and functional basis for the greater developmental competence in Korean Native Cow (KNC) oocytes.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Effect of Type of Culture Media on B6D2F1 Mice Oogenesis (배양액 종류가 B6D2F1 마우스 배아발생능력에 미치는 영향)

  • Yoo, Chang-Seok;Park, Kee Sang;Seo, Byoung Boo
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • This study was conducted to evaluate the effects of type of culture media (BM, G2, OS, TCM, and MEM) on B6D2F1 mice oogenesis. In the present study, B6D2F1/CrljOri $F_1$ mice were utilized in order to maximize oogenesis. Also we used TCM-199, Dulbecco's medified Eagle's medium (DMEM), embryo culture medium (Fertilization medium, Cleavage medium, Blastocyst medium), G series medium and One step medium. In vitro maturation was highest in BM followed by the order of OS, MEM, TCM and G2 ($90{\pm}2.8%>88{\pm}3.2%>85{\pm}4.9%>78{\pm}10.2%>64{\pm}7.7%$, respectively). To note, the G2 group was statistically different compared to other groups (p<0.05). On the other hand the fertilization rate was highest in the G2 group followed by BM, OS, TCM, and MEM ($87{\pm}7.2%>85{\pm}6.9%>74{\pm}14.0%>71{\pm}13.8%>2{\pm}1.4%$, respectively). The MEM group was significantly lower compared to other groups (p<0.05). The developmental rate was highest in the OS group followed by the G2 group and the BM group albeit no statistical significance was noted ($73{\pm}11.6%>71{\pm}9.2%>66{\pm}10.4%$). Of note, all cells of the TCM and MEM groups were died during embryonic development. The zona hatched rate ($51{\pm}9.8%$ vs. $50{\pm}9.1%$ vs. $47{\pm}7.2%$ for BM, G2, and OS respectively) and attached rate ($45{\pm}12.3%$ vs. $38{\pm}16.1%$ vs. $37{\pm}11.5%$ for BM, G2, and OS respectively) were not different amongst groups. No difference was found in total cell numbers ($74{\pm}13.9$ vs. $64{\pm}9.2$ vs. $76{\pm}6.7$ for BM, G2, and OS respectively), ICM cell numbers ($20{\pm}1.9$ vs. $14{\pm}1.8$ vs. $15{\pm}2.1$), TE cell numbers ($55{\pm}12.5$ vs. $49{\pm}10.7$ vs. $61{\pm}5.9$), % ICM ($30{\pm}2.8%$ vs. $24{\pm}7.0%$ vs. $22.8{\pm}2.2%$) and ICM:TE ratio ($1:2{\pm}0.5$ vs. $1:3.1{\pm}0.8$ vs. $1:3.1{\pm}0.5$) amongst groups. In summary, these results can provide fundamental data to maximize culture condition for in vitro fertilization on B6D2F1 mice.

Effects of Heat Stress on the Developmental Competence of Bovine Cumulus-Oocyte Complex During in vitro Maturation (Heat Stress가 소 난자의 체외성숙과 배반포 발달에 미치는 영향)

  • Kim, Min-Su;Kim, Chan-Lan;Seong, Hwan-Hoo;Kim, Namtae;Kim, Sung Woo
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.65-71
    • /
    • 2017
  • The elevated temperature and high humidity has been known as main reason for heat stress on animals and cause detrimental effects on productivity of organisms and physiological conditions of normal bioactivities. The aims of this study were to evaluate the relationship between time of heat shock simulation during in vitro maturation and developmental competence of subsequent embryo after in vitro fertilization. Heat shocked cumulus-oocyte complexes (COCs) of Korean native cattle were subjected to normal conditions for 22, 21, 18 and 12 h respectively and transferred to heat stress inducing condition at $40.5^{\circ}C$ in other incubator for 0 (control), 1 and 4 h. After maturation for 22 h, the oocytes were fertilized and cultured in mSOF media for 8 d and examined the developmental capacity of embryos. There were no differences in maturation and cleavage rates between 0, 1 and 4 h heat socked oocytes, but blastocysts formation were lower in the 4 h heat stressed oocytes. The apoptotic cells of developed blastocysts were also increased in at day 8 with 4 h heat shocked oocytes. These results indicate that heat shock on oocytes during maturation could cause negative effects on the developmental competence of embryos.

Amino Acid Concentrations in the Blastocoelic Fluid of In Vitro-Produced Bovine Blastocysts (체외생산된 소 배반포강 내의 아미노산 농도)

  • Jung, Y.G.;Wei, H.;Yoon, J.T.;Fukui, Y.
    • Journal of Embryo Transfer
    • /
    • v.13 no.3
    • /
    • pp.251-259
    • /
    • 1998
  • Concentrations of free amino acids in the BF of IVP bovine BL and HBL were examined in this study. The embryos derived from IVF oocytes were cultured in a SOFM containing BSA, EAA and NEAA. BF was aspirated from BL (180 h of age after insemination) and HBL (216 h of age after insemination), and introduced into drops of SOFM (30$\mu$l/drop) containing PVA through micromanipulation. The medium containing BF was then subjected to measurement of 20 amino acids by an automatic amino acid analyzer. The concentrations of isoleucine, leucine and methionine were higher (p〈0.05) in the BF from HBL than from BL, and no difference was found in aspartate or glutamate concentrations between BL and HBL, while threonine, alanine (p〈0.01) and the rest of the amino acids (p〈0.001) were significantly higher in the BF from HBL than from BL. Cystine was not found in either BL or HBL. A high concentration of glutamine was found in the BF from both BL and HBL, although it was not added to the culture medium. These results indicate that bovine BF contains several EAA (methionine in BL and isoleucine, leucine and methionine in HBL) and NEAA (alanine, glutamate, glycine, proline, serine and aspartate in BL, and glutamate and aspartate in HBL), and there is significant differences in the amino acid concentration in the BF between BL and HBL derived by WP.

  • PDF

Development and Expression of Porcine Embryos by Direct Injection of Sperm Treated with Exogenous DNA (외래유전자 도입정자를 이용한 돼지 체외성숙 난포란의 Intracytoplasmic Sperm Injection (ICSI) 후 후기 배로의 발달율과 외래유전자의 발현에 관한 연구)

  • 정기화;조성근
    • Journal of Embryo Transfer
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The main goal of this study was to produce transgenic porcine embryos by direct injection of sperm-mediated exogenous DNA. Spermatozoa (6$\times$10$^{6}$ sperms of final concentration) were mixed with pcDNA LAC Z (20 ng/$\mu$l) and subjected into electroporation (300~750 volts, 25 $\mu$F, 0.4 cm electrode). After sperm injection, the oocytes were activated electrically (1.7 KV/cm, 30$\mu$sec, single pulse) in 0.3 M mannitol solution or not. The sperm injected eggs were cultured in NCSU 23 medium (0.4% BSA) at 39$^{\circ}C$, 5% $CO_2$ in air fur 144 h. The rates of cleavage and development into blastocyst stage in activation group were significantly higher than those of non-activation group (79.6% and 24.1% vs. 46.3% and 14.4%, respectively, p<0.05). Control oocytes and shame injection were developed to blastocysts low (2.5%). Sixty five (27.1%) out of 240 embryos observed in activation and non-activation groups were showed positive by X-gal staining. However, all embryos in both groups were expressed partial or mosaic pattern. These results suggested that electrical stimulation far oocytes activation after sperm injection enhances the incidence of both fertilization and development fellowing sperm injection in the pig. Our study also suggested that sperm-mediated transfer of exogenous DNA by ICSI would be used as a valuable tool for the production of transgenic porcine embryos.