• Title/Summary/Keyword: Blasting vibration coefficients

Search Result 8, Processing Time 0.02 seconds

Influence of Sample Number on the Estimation of Blasting Coefficients and Limit Scaled Distance (측정수가 발파계수와 허용환산거리의 산정에 미치는 영향)

  • 양형식;전양수;정지문
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.814-820
    • /
    • 1998
  • Vibration data from two blasting sites were analyzed to determine the sufficient sample number for blasting vibration estimation. Most important result is that much more than 30 sample data and succeeding measurement are necessary to estimate confident blasting vibration level and to determine limit scaled distance.

  • PDF

Blasting vibration coefficients and mechanical characteristics of Taegu area (대구지역지층의 지질특성과 대표암반에 대한 발파진동계수산출)

  • 안명석;김종대;김남수
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.211-217
    • /
    • 2000
  • In this, study, some laboratory tests and in-situ test were performed for Taegu area. Test blasting was conducted to determine blasting vibration coefficients. The uniaxial strength of rocks vary widely from weathered rock to extremely hard rock. Boasting vibration coefficient, K and n were 114.8, 1.48 for Sungseu site, where rocks show weathered to medium strength.

  • PDF

Prediction and Determination of Correction Coefficients for Blast Vibration Based on AI (AI 기반의 발파진동 계수 예측 및 보정계수 산정에 관한 연구)

  • Kwang-Ho You;Myung-Kyu Song;Hyun-Koo Lee;Nam-Jung Kim
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • In order to determine the amount of explosives that can minimize the vibration generated during tunnel construction using the blasting method, it is necessary to derive the blasting vibration coefficients, K and n, by analyzing the vibration records of trial blasting in the field or under similar conditions. In this study, we aimed to develop a technique that can derive reasonable K and n when trial blasting cannot be performed. To this end, we collected full-scale trial blast data and studied how to predict the blast vibration coefficient (K, n) according to the type of explosive, center cut blasting method, rock origin and type, and rock grade using deep learning (DL). In addition, the correction value between full-scale and borehole trial blasting results was calculated to compensate for the limitations of the borehole trial blasting results and to carry out a design that aligns more closely with reality. In this study, when comparing the available explosive amount according to the borehole trial blasting result equation, the predictions from deep learning (DL) exceed 50%, and the result with the correction value is similar to other blast vibration estimation equations or about 20% more, enabling more economical design.

A Study on the Development for Prediction Model of Blasting Noise and Vibration During Construction in Urban Area (도시지역 공사 시 발파 소음·진동 예측식 개발에 관한 연구)

  • Jinuk Kwon;Naehyun Lee;Jeongha Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.84-98
    • /
    • 2024
  • This study proposed a prediction equation for the estimation of blasting vibaration and blasting noise, utilizing 320 datasets for the blasting vibration and blasting noise acquired during urban blasting works in the Incheon, Suwon, Wonju, and Yangsan regions. The proposed blasting vibration prediction equation, derived from regression analysis, indicated correlation coefficients of 0.879 and 0.890 for SRSD and CRSD, respectively, with an R2 value exceeding 0.7. In the case of the blasting noise prediction equation, stepwise regression analysis yielded a correlation coefficient of 0.911 between the prediction values and real measurements for the blasting nosie, and further analysis to determine the constant value revealed a correlation coefficient of 0.881, with an R2 value also exceeding 0.7. These results suggest the feasibility of applying the proposed prediction equations when environmental impact assessments or education environment evaluation according to urban development or apartment construction projects is performed.

A Study on the Safe Blasting Design by Statistical Analysis of Ground Vibration for Vibration Controlled Blasting in Urban Area (II) (도심지 미진동 제어발파에서 진동분석을 통한 안전 발파설계에 관한 연구(II) - 진동측정 자료의 통계적 분석을 위주로 -)

  • 김영환;안명석;박종남;강대우;이창우
    • Explosives and Blasting
    • /
    • v.18 no.2
    • /
    • pp.7-13
    • /
    • 2000
  • Abstract The characteristics of bed rock in the study area was classified by means of the crack coefficient estimated from the seismic velocities of in-situ and intact rocks. Various statistical methods were investigated in order to minimize the possible errors in estimating the predictive equation of blasting vibration and to enhance the determination coefficient $R^2$, for more reliable estimation. The determination coefficient showed the highest in the analysis for those groups using weighting function with the number of samples. The analysis for the weighting function employed with standard coefficient and variance also enhanced the determination coefficients significantly compared to the others, but the reliability was slightly lower than results obtained former method. Therefore the most reliable predictive equation of blasting vibration was found to be obtained from a regression analysis of the mean vibration level using the weighting of same distance groups within 15m with the same explosive charge weight per delay. The coefficients, K and n 317.4 and -1.66, respectively, when using the square root scaling, and 209.9 and -1.66, respectively, when using the cube root scaling. The analysis also showed that the square root scaling may be used in the distance less than 31m form the blast source, and the cube root scaling in the distance more than 31m for safe design.

  • PDF

A Study on the Estimation of Coefficients K and n Using Multivariate Data Analysis (다변량 통계기법을 이용한 K및 n의 산정에 관한 연구)

  • 백용진;최재성;배동명;김경진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.583-590
    • /
    • 2003
  • For the preestimate of the vibration level of the ground next to a dwelling, a multivariate statistical analysis on the experiment data acquired from a variety of construction sites was performed, and then a new estimate model for the value of K and n that can be applied in the diagnosis of the damage was offered. The results maybe summarized as follows : First, the $K_{95}$ and n showed high correlation at P$\leq$0.05. Specially the correlation coefficient about $W_{max}$, S were higher in $K_{95}$ than in n. indicating that $K_{95}$ is generally associated with source conditions. Second, the factor analysis permitted to identify two major sources in each fraction. These sources accounted for at least 73 % of valiance of $K_{95}$. Third, the multiple regression model for the estimate of $K_{95}$ was developed from Fac1 which depend upon the source conditions and Fac2 which depend upon the transmission conditions. The n value is able to determine from the correlation relationship associated with $K_{95}$./.

A case study on variation of the coefficients K and n with proceeding of blasting works at the felsite zone (규장암지역에서 발파공사중 K 및 n의 변화에 대한 연구)

  • 안명석;박종남
    • Explosives and Blasting
    • /
    • v.16 no.4
    • /
    • pp.29-39
    • /
    • 1998
  • A case study was made on in site vibration velocity data collected for two months in the construction area of the Daeduck cultural City Hall. Taegu The geology over the area shows distributions of weathered and some crack developed hornfels of mud-shale in the upper part, underlain by less weathered and hard compact quartzite. For the period of 2 months of blasting event, the vibration velocities were measured and these data were analysed for K and n for three different period the test period, first month and second month. The data for the test period show that K and n are 2464 and 1.621 with the cube root method, and 7154 and 1.791 with the sqare root one, respectively. The data for the first month collected mostly from blasting in the upper hornfels show that K and n are 1668 and 1,492 for the cube root and 1219 and 1,366 for the square root, respectively. Such a significant decrease in the K and n values from the test period through the first month for the weathered and comparatively well crack developed rocks hard and compact lower quartzite, may be due to difference in attenuation of waves propagating through physically different media. Therefore, for more effective safety design and blasting, it seems that it may be n to adopt appropriate K and n values, with getting lower step by step while proceeding the operation. In the meantime, the attenuation rate of K and n together with SD cross point for the cube and square root methods indicates that the cube root one appears to be more applicable than the square root for this area with limited distance(The maximum is 100m).

  • PDF

A new bridge-vehicle system part I: Formulation and validation

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • This paper presents the formulation of a new bridge-vehicle system with validation using the field data. Both pitching and twisting modes of the vehicle are considered in the contribution of the dynamic effects in the bridge responses. A heavy vehicle was hired as a control vehicle with known axle weight, axle spacing and spring coefficients. The measured responses were generated from the control vehicle running at a particular speed at a test span at Ma Tau Wai Flyover. The measured responses were acquired using strain gauges installed beneath the girder beams of the test bridge. The simulated responses were generated using BRVEAN that is a self-developed program based on the proposed bridge-vehicle system. The validation shows that the bridge model is valid for representing the test bridge and the governing equations are valid for representing the motion of moving vehicles.