• Title/Summary/Keyword: Blasting hole

Search Result 124, Processing Time 0.027 seconds

A Study on the Bedrock Blasting Method for Transmission Tower Foundation using the Drilling Hole Calculation Technique (천공수 산출기법에 의한 암반발파 철탑기초공법에 관한 연구)

  • Kim, Jeom-Sik;Kwon, Seo-Won;Park, Yong-Beom;Kwon, Sin-Won;Moon, Sung-Won;Shin, Woon-Yong;Park, Yong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.669-670
    • /
    • 2007
  • 본 논문은 천공수 산출기법에 의해 천공수를 산출하여 크롤러드릴을 이용한 기계천공으로 1회에 필요한 깊이를 천공하고, 장약공과 무장약공을 구분하여 장약 및 전색을 하고, 지발뇌관에 의한 순차적 발파 시공방법에 관한 것으로 현장 적용시 심빼기 발파효과와 동시에 무장약공에 의한 2차 자유면을 얻는 효과로 진동, 소음, 비석을 줄이고 암반지대의 정밀한 철탑기초굴착이 가능한 기술에 관한 연구이다.

  • PDF

Dead Pressure and its measures of Emulsion Explosives at Small Sectional Tunnel (소단면 터널에서 에멀젼폭약의 사압현상과 대책)

  • Min, Hyung-Dong;Jeong, Min-Su;Jin, Yeon-Ho;Park, Yun-Suk
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In general, the size of tunnel cross section in construction site is $50{\sim}200m^2$. But, electric cable tunnel, telecommunication cable tunnel, mine tunnel. Waterproof tunnel have small cross section less than $20m^2$. There are so many problem at small sectional tunnel: restriction of equipment, dead pressure by precompression, loss of efficiency, increase of work time. Especially, explosives remainder by precompression of previous detonation is serious problem. To find its measures of dead pressure (explosives remainder), the following series of progress have been conducted: (1) survey of previous study (2) investigate causes of dead pressure (3) set up of its measures (4) application and appraisal at tunnel site. The measures, change of cut pattern, hole space over 40cm, adjustment of delay time, are proved by experimental results.

Numerical study on the charateristics of fracture growth in fracture controlled blasting using notched blasthole (노치성형 발파공을 이용한 균열제어 발파방법의 균열발생 특성에 대한 수치해석적 고찰)

  • 백승규;김재동;임한욱;류창하
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.64-71
    • /
    • 1999
  • A numerical analysis was performed to investigate the effects of notched blasthole in controlling the fracture plane. Analyzed were elastic and elasto-plastic response of rock, and fracture propagation under static and dynamic load conditions. Results showed that the region exceeding the tensile strength extended up to three times the radius of a normal blasthole in elastic analysis, while fifteen times in elasto-plastic analysis. It was shown that a crack was driven from the notch tip up to the distance of 23 times the hole radius in the case of a notched blasthole with a notch of 5 mm in depth and 30 mm in length.

  • PDF

A Study on the Development of the Rock Blastability Classification and the Methods for Minimizing Overbereak in Tunnel (터널 굴착면 여굴 최소화를 위한 발파암 분류(안) 및 공법 개발 연구)

  • 이태노;김동현;서영화
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.303-310
    • /
    • 2002
  • Overbreak occurred inevitably in a tunnel excavation, Is the main factor for increasing cost and time in tunnel projects. Furthermore the damage to the remained rock mass related to the overbreak can give rise to a serious safety problem in tunnels. As a rule of thumb, causes for the overbreak are inaccuracy in drilling, the wrong design of blasting and selection of explosives, and heterogeneity in rock mass. Specially, the geological features of the rock mass around periphery of an excavation are very important factors, so a lot of researches have been conducted to describe these phenomena. But the quantitative geological classification of the rock mass for the overbreak and the method for decreasing the amount of the overbreak have not been established. Besides, the technical improvement of the charge method is requested as explosives for the smooth blasting have not functioned efficiently. In this study, the working face around periphery of an excavation has been continuously sectionalized to 5∼6 parts, and the new Blastability Index for the overbreak based on 6 factors of RMD(Rock Mass Description), UCS(Uniaxial Compressive Strength) JPS(Joint Plane Spacing), JPO(Joint Plane Orientation), JPA(Joint Plane Aperture) and FM(Filling Material) is proposed to classify sections of the working face. On the basis of this classification, the distance between contour holes and the charging density are determined to minimize the overbreak. For controlling the charging density and improving the function of explosives, the New Deck Charge(N.D.C) method utilizing the deck charge method and detonation transmission in hole has been developed.

  • PDF

The design of outlet in inter-cross slope with tunnel which it applied forming artificial ground (인공지반을 적용한 사교하는 사면에서의 터널 갱구부 설계)

  • Park, Chal-Sook;Kwan, Han;Lee, Kyu-Tak;Kim, Bong-Jae;Yun, Yong-Jin;Kim, Kwang-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1532-1548
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. The tunnel outlet was planned to be made after installing slope stabilization system on natural slope there. Generally, the tunnel outlet is made perpendicularly to the slope, but in this case, it had to be made obliquely to the slope for not interrupting flow of river. Because of excavation in condition of natural slope caused to deflecting earth pressure, the outlet couldn't be made. So, artificial ground made with concrete that it was constructed in the outside of tunnel for producing the arching effect which enables to make a outlet. We were planned tunnel excavation was carried out after artificial ground made. Artificial ground made by poor mix concrete of which it was planned that the thickness was at least 3.0m height from outside of tunnel lining and 30cm of height per pouring. Spreading and compaction was planned utilized weight of 15 ton roller machine. In order to access of working truck, slope of artificial ground was designed 1:1.0 and applied 2% slope in upper pert of it for easily drainage of water. In addition to, upper pert of artificial ground was covered with soil, because of impaction of rock fall from upper slope was made minimum. The tunnel excavation of the artificial ground was designed application with special blasting method that it was Super Wedge and control blasting utilized with pre-percussion hole.

  • PDF

Generation of blast load time series under tunnelling (터널 굴착 발파하중 시간이력 생성)

  • Ahn, Jae-Kwang;Park, Duhee;Shin, Young-Wan;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • It is necessary to perform a dynamic analysis to numerically evaluate the effect of blasting on nearby facilities. The blast load time history, which cannot be directly measured, is most often determined from empirical equation. The load has to be adjusted to account for various factors influencing the load and the frequency, but there is not a clear guideline on how to adjust the load. In this study, a series of 2D dynamic numerical analyses that simulates a closely monitored test blasting is performed, from which the blast load that matches the measured vibrations are derived. In the analyses, it is assumed that the hole generated by the blasting is in the form of a circle, and the load was applied normally to the wall of the opening. Special attention was given in selecting the damping ratio for the ground, since it has important influence on the wave propagation and attenuation characteristics of the blast induce waves. The damping ratio was selected such that it matches favorably with the attenuation curve of the measurement. The analyses demonstrate that the empirical blast load widely used in practice highly overstimates the vibration since it does not account for the energy loss due to rock fragmentation. If the empirical load is used without proper adjustment, the numerical analysis may seriously overstimate the predicted vibration, and thus has to be reduced in the analysis.

Propagation characteristics of blast-induced vibration to fractured zone (파쇄영역에 따른 발파진동 전파특성)

  • Ahn, Jae-Kwang;Park, Duhee;Park, Ki-Chun;Yoon, Ji Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.959-972
    • /
    • 2017
  • In evaluation of blast-induced vibration, peak particle velocity (PPV) is generally calculated by using attenuation relation curve. Calculated velocity is compared with the value in legal requirements or the standards to determine the stability. Attenuation relation curve varies depending on frequency of test blasting, geological structure of the site and blasting condition, so it is difficult to predict accurately using such an equation. Since PPV is response value from the ground, direct evaluation of the structure is impractical. Because of such a limit, engineers tend to use the commercial numerical analysis program in evaluating the stability of the structure more accurately. However, when simulate the explosion process using existing numerical analysis program, it's never easy to accurately simulate the complex conditions (fracture, crushing, cracks and plastic deformation) around blasting hole. For simulating such a process, the range for modelling will be limited due to the maximum node count and it requires extended calculation time as well. Thus, this study is intended to simulate the elastic energy after fractured zone only, instead of simulating the complex conditions of the rock that results from the blast, and the analysis of response characteristics of the velocity depending on shape and size of the fractured zone was conducted. As a result, difference in velocity and attenuation character were calculated depending on fractured zone around the blast source appeared. Propagation of vibration tended to spread spherically as it is distanced farther from the blast source.

An Experimental and Numerical Study on the Stemming Effect of a Polymer Gel in Explosive Blasting (화약발파에서 폴리머 겔의 전색효과에 관한 실험적 및 수치해석적 연구)

  • Baluch, Khaqan;Kim, Jung-Gyu;Ko, Young-Hun;Kim, Seung-Jun;Jung, Seung-Won;Yang, Hyung-Sik;Kim, Youg-Kye;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.35-47
    • /
    • 2018
  • In this study, several concrete-block blast tests and AUTODYN numerical analyses were conducted to analyze the effects of different stemming and coupling materials on explosion results. Air, sand, and polymer gel were used as both the stemming and coupling materials. The stemming and coupling effects of these materials were compared with those of the full-charge condition. Soil-covered or buried concrete blocks were used for field crater tests. It was found from the concrete block tests and numerical analyses that both the crater size and the peak pressure around the blast hole were higher when the polymer gel was used than when the sand and the decoupling condition were used. The numerical analyses revealed the same trend as those of the field tests. Pressure peaks in concrete block models were calculated to be 37, 30, and 16 MPa, respectively, for the cases of the polymer gel, sand, and no stemming and decoupling condition. The pressure peak was 52 MPa in the case of full-charge condition, which was the highest pressure. But the damage area for the case was smaller than that obtained from the use of polymer gel. Full-charge was also used as a reference test.

A example study on monitoring near field vibration in the rock mass adjacent blast hole (발파공 주변의 인접거리 진동계측 사례연구)

  • Lee, Hyo;Won, Yeon-Ho;Kim, Jin-Soo;Ju, Young-Og
    • Proceedings of the KSEE Conference
    • /
    • 2006.10a
    • /
    • pp.153-166
    • /
    • 2006
  • 종래의 발파진동의 분석은 주로 대상 지장물에 대한 피해한계를 정립시키고자 하는 관점에서 발파공에서 비교적 원거리의 진동특성을 이해하기 위해 수행되어져 왔으나, 최근의 추이는 발파공 주변 암반의 손상의 정도를 평가하고자 하는 관점에서 그 분석영역의 범위가 근거리 진동특성 연구분야로 확대되고 있는 실정이다. 특히, 터널 발파작업시 여굴의 발생, 암반사면의 안정성 검토 등의 목적으로 암반의 손상영역을 평가하는데 있어서, 기초자료로 활용하고자 많은 연구가 이루어지고 있다. 암반손상의 평가를 위한 손상권 예측방법에는 여러 가지가 있으나, 그 중에서 대부분이 발파진동속도에 근거하고 있으며, 평가를 위한 진동의 예측은 기존에는 원거리 진동특성을 이용하여 근거리 진동을 예측하는 방법으로 그 손상의 정도를 평가하였으나, 최근의 추세는 계측기의 발달로 수m 이내의 진동특성의 계측이 가능하게 되었다. 이와 관련하여 국외에서는 수차례의 실험결과가 여러 문헌에서 보고되고 있으나, 실험장비의 선택 및 측정방법의 어려움 등의 연유로 국내에서는 아직까지 실시되지 못하고 있는 상황이다. 따라서, 본 연구에서는 실제 발파공 근접진동(near field vibration) 계측을 실시하고 그 결과를 분석하여 추후 지속적인 근거리 진동측정 방법 및 평가방법에 대한 기초자료를 제공하고자 하였으며, 무엇보다도 어떻게 계측할 것인가 하는 계측방법 및 그 계측결과의 분석방법에 대해 문제점 파악 및 향후 보완점에 대해 비중을 두어 수행하였다.

  • PDF

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.