• Title/Summary/Keyword: Blasting damage

Search Result 156, Processing Time 0.022 seconds

Investigation of blasting impact on limestone of varying quality using FEA

  • Dimitraki, Lamprini S.;Christaras, Basile G.;Arampelos, Nikolas D.
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.111-121
    • /
    • 2021
  • Large deformation and rapid pressure propagation take place inside the rock mass under the dynamic loads caused by the explosives, on quarry faces in order to extract aggregate material. The complexity of the science of rock blasting is due to a number of factors that affect the phenomenon. However, blasting engineering computations could be facilitated by innovative software algorithms in order to determine the results of the violent explosion, since field experiments are particularly difficult to be conducted. The present research focuses on the design of a Finite Element Analysis (FEA) code, for investigating in detail the behavior of limestone under the blasting effect of Ammonium Nitrate & Fuel Oil (ANFO). Specifically, the manuscript presents the FEA models and the relevant transient analysis results, simulating the blasting process for three types of limestone, ranging from poor to very good quality. The Finite Element code was developed by applying the Jones-Wilkins-Lee (JWL) equation of state to describe the thermodynamic state of ANFO and the pressure dependent Drucker-Prager failure criterion to define the limestone plasticity behavior, under blasting induced, high rate stress. A progressive damage model was also used in order to define the stiffness degradation and destruction of the material. This paper performs a comparative analysis and quantifies the phenomena regarding pressure, stress distribution and energy balance, for three types of limestone. The ultimate goal of this research is to provide an answer for a number of scientific questions, considering various phenomena taking place during the explosion event, using advanced computational tools.

A Study on Delay Time Control for Lowering Grounding Vibration and Noise Induced by Blasting (발파에 의한 지반진동 및 소음 저감을 위한 지연시차 조절에 관한 연구)

  • Lee, Bong-Hyun;Choi, Sung-Oong
    • Explosives and Blasting
    • /
    • v.32 no.3
    • /
    • pp.18-25
    • /
    • 2014
  • Ground vibration and noise from blasting operation are known to be the most representative constituents which can cause human and material damage. In this study, the effect of delay time on ground vibration is investigated by adopting seven different delay times in bench blasting. For each delay time, three blasting operations were performed. The prediction equations for blasting vibration are derived from 50 sets of measurement and the time theory of Langefors is evoked in the analysis of the blasting vibrations and frequencies. For the delay times of 8 ms and 28 ms, the average values of ground vibration are 5.76 cm/sec and 5.75 cm/sec, respectively, which are considerably low. Also the cyclic variation in the vibration measurements with the delay time confirms the interference effect. From the application of the measurements of blasting vibration and frequency to the time theory of Langefors, it is concluded that the optimum delay times are 8 ms and 24 ms for the test site.

Characteristics of Impulsive Noise of Waterfront Construction Site and Its Effects on Fishes (수변 공사에 의한 충격음의 특성과 어류에 미치는 영향)

  • Bae, Jong-Woo;Park, Ji-Hyun;Yoon, Jong-Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.928-934
    • /
    • 2009
  • Underwater impulsive sound such as underwater blasting noise, piling noise and stone breaking hammer affects marine animal hearing response and organs. This study describes the characteristics of various impulsive noise from waterfront construction site and their effect on fish. Time constant, peak pressure, energy and SEL(sound exposure level) of four different underwater impulsive sounds are quantified. Auditory and non-auditory tissue damage ranges are derived by comparing their quantities to the exposure criteria for fish. Damage ranges of auditory tissue and non-auditory tissue of underwater boring blast of 150 kg of charge, are about 100 m and 300 m, respectively. Other three impulsive sounds also gives damage effects but less than that of underwater boring blast.

Damage Diagnosis of Drill Bit while Drilling using Wavelet Transform Analysis (웨이블릿 변환 분석을 이용한 천공 중 드릴 비트의 손상 진단)

  • Jang, Hyongdoo
    • Explosives and Blasting
    • /
    • v.38 no.1
    • /
    • pp.14-22
    • /
    • 2020
  • Bit damage is one of the primary causes of decreasing drilling efficacy. Nevertheless the management of bit ware and failure are often left for field engineers' experience. Thus it is imperative to establish a proper system to predict and manage the bit damage during the rock drilling process. In this study, the drilling sound signal has been recorded and analyzed using wavelet transform analysis to identify the exact moment of bit failure. Through the analysis wavelet time-frequency spectrums have been constructed and an abnormal point has been identified with 0.9 of wavelet transform value at the 652.8s on a frequency band around 500Hz. Furthermore it is also observed that the penetration rate of the damaged bit has been decreased to 23mm/s which is 9mm/sec lower than the average of undamaged bit. The study verifies that wavelet transform analysis can be used to build a system to diagnose the bit damage while drilling.

A Study on Prediction of Ground Vibration by Near Field Blasting (발파에 의한 근거리 지중진동의 예측방법에 관한 연구)

  • Lee, Hyo;Kang, Chu-Won;Ko, Jin-Seok
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.32-42
    • /
    • 2011
  • For blasting vibration analysis, there are mostly two methods, firstly, far field vibration analysis to estimate limit of building damage, secondly, near field subterranean vibration analysis to estimate rock damage and subterranean structure facilities. The former has been mainly used in our country and aboard, the latter is mostly analysed by using Homberg's model. In this model, basic input data are acquired in far field surface vibration. But in the consideration of the results of being conducted in this area over the past few decade, it is required that Homberg's model is modified. For the purpose of this, measurements of near field vibration were first conducted in our country. But it was only proposed the measurement method and the method of analysis or prediction was not suggested. Accordingly, in this paper, measurements of near field subterranean vibration were conducted and the method of analysis or prediction of near field subterranean vibration would be suggested.

A Numerical Study on the Reduction Effect of Blasting Vibration with Cut Method (심발공법에 따른 발파진동 저감효과에 대한 수치해석적 연구)

  • Son, Ji-Ho;Kim, Byung-Ryeol;Lee, Seung-Joong;Kim, Nam-Soo;Lee, Hyo;Choi, Sung-Oong
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The repeated blasting vibration, which is induced commonly in NATM excavation site, can cause a severe damage to the nearby facilities. It is known that the most effective method for reducing blasting vibration includes the use of electronic detonator, deck charge and change of cut method, and so forth. In order to analyze the effect of blasting vibration reduction, in this study, three-dimensional FDM (Finite Difference Method) program FLAC3D has been used for reflecting the blasting hole, delayed time and charging amount. Also the numerical analysis has been performed by applying a dynamic load to each blasting hole. The cut method has been applied with several methods, such as V-cut and Double-drilled parallel cut, which are common in tunnel construction sites. Also, the field test blasting has been carried out in order to compare the measured data with results of numerical analysis. It was shown that the numerical analysis and the field measurement coincide well.

On the Study of Blasting Vibration, Sound by Measuring Gage Influence to Exist Crack in 154kV Daeshin Electric Cable Tunnel (154kV 대신 S/S인출 전력구 시험발파 패턴 및 진동, 소음 계측에 의한 기존 CRACK에 미치는 영향 연구)

  • 강대우;박태원
    • Explosives and Blasting
    • /
    • v.16 no.3
    • /
    • pp.25-34
    • /
    • 1998
  • This area is covered in Andesite of high compression strength and located in PUSAN SEO-KU. There are many old houses around shaft site. So, we must have a cautious blasting operation. A total of 40 blasts were test at DAE-SHIN Shaft site to study the magnitude and frequency characterization of blast-induced vibration. The effect of viblating frequency on structual damage and site-specific scaling to define th empirical equations were also discussed. The result can be summarized as follows: 1. Some empirical equations were obtained. $V=K\{{\frac{D}{W}}1/3\}^{-n}$ where the values for n and K are estimated to be -1.407 to -2.202 and 643.3489 to 7283.2104 respectively. 2. Dominant frequencies at short distance are in the range of about 75.0 to 91.8 Hz, with some exceptions of about 50Hz, Frequencies observed at long distance are in the range of 10 to 2Hz. It is apparent the shift of dominant frequency down to lower levels at long distance.

  • PDF

Standardization of Cautious blasting (정밀발파의 표준화(下))

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.23 no.6
    • /
    • pp.41-46
    • /
    • 1990
  • First of all, Under given condition such as bit gage of 36mm Drill bit with right class of jack-logs experimental test carried out from two face of Bench, firing of each hole brought 90 degree Angle face and them measured length of Burden and charged ammount of powder as following. (equation omitted) A=Activated Area A=ndi=m S=Peripheral length of Charged. room Ca=Rock Coeffiecency d : di=Hole diameter When constructed subway of Seoul in 1980 the blasting works increased complaint of ground vibration. in order to prevent the damage to structures. Some empirical equations were made as follows on condition with Jackleg Drill (Bit Gage ø 36mm) and within 30 meter distance between blasting site and structures. V=K(D / W)$\^$-n/ N=1.60-1.78 K=48-138 Project one of contineous works to above a determination of empirical equation on the cautious blasting vibration with Crawler Drill(ø 70-75mm) in long distance. V=41(equation omitted) V=124(equation omitted).

  • PDF

Case Study on Vibration Monitoring of Area Adjacent to Blast Hole (발파공 주변의 인접거리 진동계측 사례 연구)

  • Lee, Hyo;Won, Yeon-Ho;Kim, Jin-Soo;Ju, Young-Og
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.83-91
    • /
    • 2006
  • Over the past few decades, blasting vibration has been mainly analysed to understand characteristics of far field vibration in the area comparatively far from blast hole in the respect of proving limit of building damage. However, over the last few years, many works have been carried out to estimate damage within the rock adjacent to a blast hole, especially for the Purpose of over break in tunnel blasting and rock slope stability There are several methods to estimate rock damage, but method of using blast vibration has been mostly used to estimate rock damage. Formerly, to estimate rock damage, method of expecting near field vibration using the characteristics of far field vibration had mainly used but nowadays, it is practically possible to measure near field vibration according to development of monitoring system. A few repels relating to this have been studied aboard, but very little work has been conducted in our country because of difficulty of monitoring and choice of monitoring system. Accordingly, in this Paper, measurements of near field vibration were conducted and wave forms were analyzed and some problems were investigated in measuring system.