• Title/Summary/Keyword: Blasting damage

Search Result 156, Processing Time 0.026 seconds

Effect of Rock Damage Induced by Blasting on Tunnel Stability (발파굴착의 암반손상이 터널안정성에 미치는 영향분석)

  • Lee, In-Mo;Yoon, Hyun-Jin;Kim, Dong-Hyun;Lee, Sang-Don;Park, Bong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.681-688
    • /
    • 2003
  • Rock damage induced by blasting can not be avoided during tunnel construction and may affect tunnel stability. But the mutual interaction between tunnel blasting design and tunnel stability design is generally not considered. Therefore this study propose a methodology to take into considration the results of the blasting damage in tunnel stability design. Rock damage is evaluated by dynamic numerical analysis for the most common blasting pattern adopted in road tunnel. Damage zone is determined by using the continuum damage model which is expressed as a function of volumetric strain. And the damage effect is taken into account by the damaged rock stiffness and the damaged failure criteria in tunnel stability assessment. The extend of plastic zone and deformation increase compared to the case of not considering blast-induced rock damage.

  • PDF

Numerical Modelling of Tunnel Blasting (터널발파의 수치해석적 모델링)

  • 이인모;최종원;김상균;김동현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.133-140
    • /
    • 2000
  • Drilling and blasting method for excavating rock mass is generally used in underground construction; but this technique has some shortcomings. For instance, rock mass damage is inevitable during drilling and blasting, and blast-induced vibration frequently causes some problems. Until now, field measurement method is used to predict the overbreak and vibration; but it has many limitations. Therefore, numerical analysis method is needed to overcome such limitations, and to estimate and predict damage and vibration due to tunnel blasting in the design stage. In this study, damage zone of rock mass due to stoping and contour blasting is compared based on standard tunnel blasting pattern, and the propriety of the standard tunnel blasting pattern is estimated. Then, blasting pattern is optimized so that the damage zone due to sloping blasting with reduced charge is consistent with that due to contour blasting.

  • PDF

Evaluating Blasting Induced Damages of Granite (발파에 의한 화강암반의 손상평가)

  • 목영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.85-92
    • /
    • 1999
  • Blasting induced damage boundary was determined by measuring vibrations adjacent to charging holes. the criterion adopted to define damages is that blasting-induced strains exceeding tension-crack strain level cause damages. The blasting vibrations were measured in terms of acceleration and converted to strains. The tension-crack strain level was determined with tensile strengths and elastic moduli of rock cores. The damage zone was found to be extended radially about 1 meter from the blasthole detonated with 250 to 700 grams of explosives. The comparison of shear wave velocity profiles before and after blasting shows that the damage boundary of 1 meter seems to be reliable.

  • PDF

A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel (손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구)

  • Park, Jong-Ho;Um, Ki-Yung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF

The effect of blasting patterns on cut slope stability factors (사면 안정성 요인에 대한 발파패턴의 영향)

  • Kim, Soo-Lo;Lee, Hak-Kyu;Chang, Buhm-Soo;Shin, Chang-Gun;Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.614-621
    • /
    • 2004
  • Blasting is a technique for rock excavation: For instance, a rock cutting in a mountain side to prepare a base for a road. The blasting damage affect the rock slope stability. Therefore control blasting must be used. In this study, cutting cases of Sixty-nine rock blasts were investigated. Blasting damage patterns in rock slope and reinforcement methods are studied.

  • PDF

Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method (SB발파에서 파단면 제어의 고도화에 관한 연구)

  • Cho, Sang-Ho;Jeong, Yun-Young;Kim, Kwang-Yum;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • Recently, in order to achieve smooth fracture plane and minimize the excavation damage zone in rock blasting, controlled blasting methods which utilize new technologies such as electronic delay detonator (EDD) and a notched charge hole have been suggested. In this study, smooth blastings utilizing three wing type notched charge holes are simulated to investigate the influence of explosive initial density on the resultant fracture plane and damage zone using dynamic fracture process analysis (DFPA) code. Finally, based on the dynamic fracture process analyses, novel smooth blasting method, ED-Notch SB (Electronic Detonator Notched Charge Hole Smooth Blasting) is suggested.

Estimation of Structural Damage by Blasting Vibration Considering the Environmental Crack Deformation (일상 환경변화를 고려한 구조물 진동피해의 수준 평가)

  • 정지문;양형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.57-64
    • /
    • 1999
  • In order to decide critical vibration level on structural damages induced by near blasting, deformation of existing cracks in structure was investigated and ground vibrations were measured. New criteria to evaluate blasting damage to structure are proposed considering daily deformation of cracks in structures. Results from 2 brick houses in fishing village show that new design criteria far more than current are required to cause structural damage for brick houses.

  • PDF

A Study on the Characteristics of Blasting Vibration from Different Excavation Methods in Underground Mine (지하채굴공동에서 굴착방법에 따른 발파진동의 특성에 관한 연구)

  • Kang Choo-Won;Ryu Pog-Hyun
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, most of limestone quarries have been not mined by open-pit mining but by underground excavation to reduce environmental pollution. As a result, the size of underground galleries became bigger to maintain mass-production close to open-pit mining. However, the scale of pillars and galleries as well as the excavation methods may induce a few adverse problems for the stability of a mined gallery. In this study, the nomogram analysis and the prediction of rock damage zone induced by blasting were carried out. The testing conditions include concurrent blasting of two adjacent galleries, concurrent blasting of a transport drift and a inclined shaft, sequential blasting of two galleries, and separate blasting for each gallery. For each testing condition, blast vibration velocity was measured and analyzed. From the prediction formulas for blast vibration velocity derived in this study, the maximum depth of rock damage zone induced by blasting were also predicted.

Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Qin, Yang;Li, Peng;Li, Yujie
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.399-413
    • /
    • 2018
  • This paper addresses the issue of field measurement of excavation damage zone (EDZ) and its numerical simulation method considering both excavation unloading and blasting load effects. Firstly, a 2000 m-deep rock cavern in China is focused. A detailed analysis is conducted on the field measurement data regarding the mechanical response of rock masses subjected to excavation and blasting operation. The extent of EDZ is revealed 3.6 m-4.0 m, accounting for 28.6% of the cavern span, so it is significantly larger than rock caverns at conventional overburden depth. The rock mass mechanical response subjected to excavation and blasting is time-independent. Afterwards, based on findings of the field measurement data, a numerical evaluation method for EDZ determination considering both excavation unloading and blasting load effects is presented. The basic idea and general procedures are illustrated. It features a calibration operation of damage constant, which is defined in an elasto-plastic damage constitutive model, and a regression process of blasting load using field blasting vibration monitoring data. The numerical simulation results are basically consistent with the field measurement results. Further, some issues regarding the blasting loads, applicability of proposed numerical method, and some other factors are discussed. In conclusion, the field measurement data collected from the 2000 m-deep rock cavern and the corresponding findings will broaden the understanding of tunnel behavior subjected to excavation and blasting at great depth. Meanwhile, the presented numerical simulation method for EDZ determination considering both excavation unloading and blasting load effects can be used to evaluate rock caverns with similar characteristics.

Numerical analysis of blast-induced anisotropic rock damage (터발파압력에 기인한 이방성 암반손상의 수치해석적 분석)

  • Park, Bong-Ki;Cho, Kook-Hwan;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.291-302
    • /
    • 2004
  • Blast-induced anisotropic rock damage around a blast-hole was analyzed by a using numerical method with user-defined subroutine based on continuum damage mechanics. Anisotropic blasting pressure was evaluated by applying anisotropic ruck characteristics to analytical solution which is a function of explosive and rock properties. Anisotropic rock damage was evaluated by applying the proposed anisotropic blasting pressure. Blast-induced isotropic rock damage was also analyzed. User-defined subroutines to solve anisotropic and isotropic damage model were coded. Initial rock damages in natural ruck were considered in anisotropic and isotropic damage models. Blasting pressure and elastic modulus of rock were major influential parameters from parametric analysis results of isotropic rock damage. From the results of anisotropic rock damage analysis, blasting pressure was the most influential parameter. Anisotropic rock damage area in horizontal direction was approximately 34% larger and about 12% smaller in vertical direction comparing with isotropic rock damage area. Isotropic rock damage area under fully coupled charge condition was around 30 times larger than that under decoupled charge condition. Blasting pressure under fully coupled charge condition was estimated to be more than 10 times larger than that of decoupled charge condition.

  • PDF