• 제목/요약/키워드: Blasting damage

검색결과 160건 처리시간 0.024초

발파굴착의 암반손상이 터널안정성에 미치는 영향분석 (Effect of Rock Damage Induced by Blasting on Tunnel Stability)

  • 이인모;윤현진;김동현;이상돈;박봉기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.681-688
    • /
    • 2003
  • Rock damage induced by blasting can not be avoided during tunnel construction and may affect tunnel stability. But the mutual interaction between tunnel blasting design and tunnel stability design is generally not considered. Therefore this study propose a methodology to take into considration the results of the blasting damage in tunnel stability design. Rock damage is evaluated by dynamic numerical analysis for the most common blasting pattern adopted in road tunnel. Damage zone is determined by using the continuum damage model which is expressed as a function of volumetric strain. And the damage effect is taken into account by the damaged rock stiffness and the damaged failure criteria in tunnel stability assessment. The extend of plastic zone and deformation increase compared to the case of not considering blast-induced rock damage.

  • PDF

터널발파의 수치해석적 모델링 (Numerical Modelling of Tunnel Blasting)

  • 이인모;최종원;김상균;김동현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.133-140
    • /
    • 2000
  • Drilling and blasting method for excavating rock mass is generally used in underground construction; but this technique has some shortcomings. For instance, rock mass damage is inevitable during drilling and blasting, and blast-induced vibration frequently causes some problems. Until now, field measurement method is used to predict the overbreak and vibration; but it has many limitations. Therefore, numerical analysis method is needed to overcome such limitations, and to estimate and predict damage and vibration due to tunnel blasting in the design stage. In this study, damage zone of rock mass due to stoping and contour blasting is compared based on standard tunnel blasting pattern, and the propriety of the standard tunnel blasting pattern is estimated. Then, blasting pattern is optimized so that the damage zone due to sloping blasting with reduced charge is consistent with that due to contour blasting.

  • PDF

발파에 의한 화강암반의 손상평가 (Evaluating Blasting Induced Damages of Granite)

  • 목영진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.85-92
    • /
    • 1999
  • Blasting induced damage boundary was determined by measuring vibrations adjacent to charging holes. the criterion adopted to define damages is that blasting-induced strains exceeding tension-crack strain level cause damages. The blasting vibrations were measured in terms of acceleration and converted to strains. The tension-crack strain level was determined with tensile strengths and elastic moduli of rock cores. The damage zone was found to be extended radially about 1 meter from the blasthole detonated with 250 to 700 grams of explosives. The comparison of shear wave velocity profiles before and after blasting shows that the damage boundary of 1 meter seems to be reliable.

  • PDF

A study on slope design at tunnel portal considering impact of blasting

  • Ji-Ung Lee;Jee-Hee Jung;Kang-Hyun Lee;SangRae Lee;Nag-Young Kim
    • Geomechanics and Engineering
    • /
    • 제38권6호
    • /
    • pp.611-620
    • /
    • 2024
  • The slope stabilization method is constructed on bedrock, but performance degradation occurs during an impact (earthquake, blasting, etc.) after construction, which may affect service life and factor of safety. In particular, the top-down method implies the possibility of damage caused by blasting vibration due to the construction procedure. However, the current blasting design only reflects damage to nearby facilities, so there is a limit in its ability to assess the damage of reinforcement methods caused by blasting vibration within the scope of influence. In this study, we aim to evaluate problems and damage levels caused by close blasting effects on rock-integrated structures, such as panel-type retaining walls, anchor-combined structures, and small nails, which are mainly constructed using the top-down method. We will also analyze factors affecting long-term performance according to changes in conditions after construction, such as tunnel excavation, to establish optimal design measures.

손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구 (A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel)

  • 박종호;엄기영;조국환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF

사면 안정성 요인에 대한 발파패턴의 영향 (The effect of blasting patterns on cut slope stability factors)

  • 김수로;이학규;장범수;신창건;안상로
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.614-621
    • /
    • 2004
  • Blasting is a technique for rock excavation: For instance, a rock cutting in a mountain side to prepare a base for a road. The blasting damage affect the rock slope stability. Therefore control blasting must be used. In this study, cutting cases of Sixty-nine rock blasts were investigated. Blasting damage patterns in rock slope and reinforcement methods are studied.

  • PDF

SB발파에서 파단면 제어의 고도화에 관한 연구 (Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method)

  • 조상호;정윤영;김광염;가네꼬 카츠히꼬
    • 터널과지하공간
    • /
    • 제19권4호
    • /
    • pp.366-372
    • /
    • 2009
  • 최근, 암반발파에서 평활한 파단면과 굴착손상영역을 제어하기 위한 목적으로 전자지발뇌관 및 노치장약공 등을 이용한 제어발파기술들이 개발되어 오고 있다. 본 연구에서는 날개형 노치 장약공을 이용한 SB발파에서 암반 내 파괴과정을 모사하여 파단면과 암반손상제어에 미치는 영향인자에 대하여 고찰하였다. 최종적으로 장약공 노치의 파단면 제어효과에 관한 수치해석적 고찰을 날개형 노치장약공과 전자뇌관을 이용한 새로운 SB발파법으로, ED-Notch SB발파법(Elerectronic Detonator Notched Charge Hole Smooth Blasting Method)을 제안하였다.

일상 환경변화를 고려한 구조물 진동피해의 수준 평가 (Estimation of Structural Damage by Blasting Vibration Considering the Environmental Crack Deformation)

  • 정지문;양형식
    • 한국지반공학회논문집
    • /
    • 제15권5호
    • /
    • pp.57-64
    • /
    • 1999
  • 근거리 발파에 의한 구조물 피해의 임계진동수준을 결정하기 위해 구조물의 기존 균열 변형과 지반 진동수준을 계측하였다. 구조물에 대한 발파진동의 피해를 평가하기 위해 일상적인 환경변화에 의한 기존 균열의 최대 변형량을 고려한 새로운 기준을 제시하였다. 본 실험에서 사용된 2 채의 농어촌 조적조 가옥에 대한 시험 결과를 보면, 구조물에 피해를 유발하기 위한 진동 수준은 설계 기준보다 훨씬 더 큰 수준임을 알 수 있다.

  • PDF

지하채굴공동에서 굴착방법에 따른 발파진동의 특성에 관한 연구 (A Study on the Characteristics of Blasting Vibration from Different Excavation Methods in Underground Mine)

  • 강추원;류복현
    • 화약ㆍ발파
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2006
  • 최근 대부분의 석회석 광산은 환경문제 등으로 인하여 노천채광에서 지하채굴로 전환되었다. 그 결과 노천채광과 같은 생산성을 유지하기 위해 갱도가 대형화되고 있다. 이에 따라 갱도 및 광주의 규모 그리고 굴착방법 등에서 많은 문제가 발생하고 있다. 본 연구는 두 갱도의 동시 발파 혹은 단일갱도 내에서 좌운반갱도와 사갱을 동시 발파, 두 갱도를 다단 발파 그리고 각각의 갱도를 단독 발파하여 굴착했을 때의 발파진동을 계측하여 각각의 굴착방법에 따라 발파진동식을 산출하여 노모그램 분석과 암반손상권 분석을 실시하였다.

Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Qin, Yang;Li, Peng;Li, Yujie
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.399-413
    • /
    • 2018
  • This paper addresses the issue of field measurement of excavation damage zone (EDZ) and its numerical simulation method considering both excavation unloading and blasting load effects. Firstly, a 2000 m-deep rock cavern in China is focused. A detailed analysis is conducted on the field measurement data regarding the mechanical response of rock masses subjected to excavation and blasting operation. The extent of EDZ is revealed 3.6 m-4.0 m, accounting for 28.6% of the cavern span, so it is significantly larger than rock caverns at conventional overburden depth. The rock mass mechanical response subjected to excavation and blasting is time-independent. Afterwards, based on findings of the field measurement data, a numerical evaluation method for EDZ determination considering both excavation unloading and blasting load effects is presented. The basic idea and general procedures are illustrated. It features a calibration operation of damage constant, which is defined in an elasto-plastic damage constitutive model, and a regression process of blasting load using field blasting vibration monitoring data. The numerical simulation results are basically consistent with the field measurement results. Further, some issues regarding the blasting loads, applicability of proposed numerical method, and some other factors are discussed. In conclusion, the field measurement data collected from the 2000 m-deep rock cavern and the corresponding findings will broaden the understanding of tunnel behavior subjected to excavation and blasting at great depth. Meanwhile, the presented numerical simulation method for EDZ determination considering both excavation unloading and blasting load effects can be used to evaluate rock caverns with similar characteristics.