• 제목/요약/키워드: Blast velocity

검색결과 178건 처리시간 0.026초

Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring

  • Li, Ao;Fang, Qian;Zhang, Dingli;Luo, Jiwei;Hong, Xuefei
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.561-569
    • /
    • 2018
  • Ground vibration is one of the most undesirable effects induced by blast operation in mountain tunnels, which could cause negative impacts on the residents living nearby and adjacent structures. The ground vibration effects can be well represented by peak particle velocity (PPV) and corner frequency ($f_c$) on the ground. In this research, the PPV and the corner frequency of the mountain surface above the large-span tunnel of the new Badaling tunnel are observed by using the microseismic monitoring technique. A total of 53 sets of monitoring results caused by the blast inside tunnel are recorded. It is found that the measured values of PPV are lower than the allowable value. The measured values of corner frequency are greater than the natural frequencies of the Great Wall, which will not produce resonant vibration of the Great Wall. The vibration effects of associated parameters on the PPV and corner frequency which include blast charge, rock mass condition, and distance from the blast point to mountain surface, are studied by regression analysis. Empirical formulas are proposed to predict the PPV and the corner frequency of the Great Wall and surface structures due to blast, which can be used to determine the suitable blast charge inside the tunnel.

Damage mechanism and stress response of reinforced concrete slab under blast loading

  • Senthil, K.;Singhal, A.;Shailja, B.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.315-338
    • /
    • 2019
  • The numerical investigations have been carried out on reinforced concrete slab against blast loading to demonstrate the accuracy and effectiveness of the finite element based numerical models using commercial package ABAQUS. The response of reinforced concrete slab have been studied against the influence of weight of TNT, standoff distance, boundary conditions, influence of air blast and surface blast. The results thus obtained from simulations were compared with the experiments available in literature. The inelastic behavior of concrete and steel reinforcement bar has been incorporated through concrete damage plasticity model and Johnson-cook models available in ABAQUS were presented. The predicted results through numerical simulations of the present study were found in close agreement with the experimental results. The damage mechanism and stress response of target were assessed based on the intensity of deformations, impulse velocity, von-Mises stresses and damage index in concrete. The results indicate that the standoff distance has great influence on the survivability of RC slab against blast loading. It is concluded that the velocity of impulse wave was found to be decreased from 17 to 11 m/s when the mass of TNT is reduced from 12 to 6 kg. It is observed that the maximum stress in the concrete was found to be in the range of 15 to $20N/mm^2$ and is almost constant for given charge weight. The slab with two short edge discontinuous end condition was found better and it may be utilised in designing important structures. Also it is observed that the deflection in slab by air blast was found decreased by 60% as compared to surface blast.

파쇄영역에 따른 발파진동 전파특성 (Propagation characteristics of blast-induced vibration to fractured zone)

  • 안재광;박두희;박기천;윤지남
    • 한국터널지하공간학회 논문집
    • /
    • 제19권6호
    • /
    • pp.959-972
    • /
    • 2017
  • 발파진동 안정성 평가는 일반적으로 발파 진동추정식을 통해 최대진동속도(PPV)를 산정하고 추정된 속도 값과 법규 혹은 기준에 제시된 허용 기준 값을 비교하여 안정성 여부를 판단한다. 현장 고유의 발파 진동추정식은 시험 발파의 횟수, 대상지반의 지질학적 구조와 발파 조건에 따라 달라지기 때문에 이 식을 통해 정확한 응답 값을 예측하는 것은 한계가 있다. 또한 최대진동속도는 지반에 예상되는 응답 값으로 구조물에 대한 직접적인 평가는 불가능하다. 이와 같은 한계점으로 인해 발파 진동에 대한 구조물의 정밀한 안정성을 평가할 경우 엔지니어들은 상용화된 수치해석 프로그램을 이용한다. 하지만 폭발로 인해 발생하는 발파공 주변 암반의 복합적인 상태변화(파쇄, 분쇄, 균열, 소성변형)를 기존 수치해석 프로그램으로 정확히 모델링 하기가 쉽지 않다. 만약 이러한 일련의 과정을 모사할 경우 절점 수의 제한으로 인해 모델링이 가능한 범위가 한정적이고 긴 연산시간이 소요된다. 따라서, 본 연구에서는 폭발로 발생하는 암반의 복합적 상태변화 과정을 모사하지 않고 파쇄영역 이후 탄성에너지 전파만을 모사하는 해석 방법에 대한 연구를 수행하였으며, 이때 파쇄영역의 형상 및 크기에 따른 속도의 응답특성을 분석하였다. 그 결과 폭원 주변에서는 설정되는 파쇄영역에 따라 계산된 속도의 크기 및 감쇠에 차이를 보였다. 전파되는 진동은 폭원으로부터 멀어질수록 구형으로 확산되는 것으로 나타났다.

발파진동이 터널구조물에 미치는 영향 (Effect of blast-induced vibration on a tunnel)

  • 문훈기;신종호
    • 한국터널지하공간학회 논문집
    • /
    • 제10권3호
    • /
    • pp.207-219
    • /
    • 2008
  • 도심지내 굴착공사는 기존 지하구조물의 근접시공의 시계가 증가하는 추세이다. 근접시공에 따른 터널의 안정성은 가이드라인이 제시되어 있으나, 굴착공사에서 유발되는 발파신동이 터널구조물에 미치는 영향에 대한 연구는 미미한 실정이다. 본 연구는 국내외의 터널 안전영역 기준과 발파진동의 허용기준을 검토하고 진동가이드라인을 추정하기 위하여 수치해석적인 방법을 사용하여 수행하였다. 해석에 사용된 발파하중은 이론식인 International Society of Explosive Engineers(2000) 제안식을 이용하여 폭굉압력(detonation pressure)을 산정하였고 해석 모델은 서울지하철을 대상으로 하였다. 실제발파현장에 인접한 지하철 구간의 진동계측치를 수치해석결과와 비교하여 수치해석의 적정성을 검토하였다. 동적수치해석 결과 라이닝의 절점에 작용하는 진동속도의 영향원으로부터 허용값을 만족하는 영역을 제시하였다.

  • PDF

발파진동의 크기에 마치는 디커플링효과의 연구 (Decoupling Effect on the Level of Blasting Vibration)

  • 김왕수;임한욱
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.269-278
    • /
    • 2000
  • The pressure-time profile of the explosion gases can controlled for the use of cartridge explosive with two techniques known as Decoupling and spacing of the charges. Decoupling consists of a space between the explosive column and wall of the blast hole. Four different decoupling index 1.4, 1.8, 2.34, 3.0 are selected in this field study. The level of ground vibrations with each decoupling index was measured and the empirical particle velocity equation from these data was obtained. The condition of new cracks at blast hole are also examined. As the decoupling index is increased, the level of the blast vibration is decreased. But the cracks in rock masses are efficiently formed to remove the broken rock. The vibration constant associated with test sites is given as $K=1564.5(D.L)^{-1.3233}$ in terms of D.I.(decoupling index).

  • PDF

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

알칼리 자극제 종류에 의한 고로슬래그 미분말 모르타르의 강도 특성 (Mechanical Properties of Blast Furnace Slag Fineness Mortar according to Alkali Activator)

  • 김종희;김규용;신경수;남정수;구경모;윤용상
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.217-218
    • /
    • 2011
  • The advantages of blast-furnace slag concrete may include lower hydration heating velocity, restraint on concrete temperature increase, long-age strength improvement due to latent hydraulic reaction, improved water tightness, and repulsion to chemical erosion. These advantages contribute to the high quality of the blast-furnace slag concrete. However, the blast-furnace slag concrete has its limitations as well. These disadvantages may include retarded setting and elongated retention of mold due to the weak strength of early-age. Nevertheless, much research is currently under way to improve the aforementioned issues. To improve activity of blast furnace slag powder, alkaline irritants has been used. In this study, we analyze effect on activity fineness and rate of substitution of Alkali Activator toward activity.

  • PDF

암반절리를 고려한 발파진동 영향평가 (Assessment of Blast-induced Vibration for the Stability of Discontinuous Rock Mass)

  • 박병기;전석원;박광준;도덕수;김태훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.485-492
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been Increased recently in order to analyze the effect of the blast-induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure curves estimated by theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a discontinuum dynamic analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced vibration and the stability of rock slope.

고로하부 액체유동에 대한 수치해석 사례 - 냉간유동 (Numerical Simulation of the Liquid Flow in the Lower Part of the Blast Furnace - A Cold Flow Case)

  • 진홍종;최상민;정진경
    • 한국연소학회지
    • /
    • 제13권2호
    • /
    • pp.33-41
    • /
    • 2008
  • The high permeability of the gas in the molten iron of the dripping zone of the blast furnace is a major factor in achieving the stable operation of a furnace with high productivity. Basic studies of the liquid flow behavior in a packed bed are necessary to grasp the effect of various operational changes on conditions in the dropping zone. Molten iron and slag together playa critical role in the lower zone, transporting mass and energy, while impairing and redistributing the gas flow. In turn, molten iron and slag undergo physical and chemical changes, and are redistributed radially as they descend to the hearth. In this research, mathematical formulations are derived for the gas and the liquid. The solid phase is fixed with constant porosity. The information for the molten iron and slag includes the hold-up, velocity, pressure, and information related to the areas of interaction between the gas and the liquid, and the solid and the liquid. Predictable results include the velocity, pressure and temperature distribution. Additional parameters include the packed particle size and the air blast rate.

  • PDF

Numerical Modelling of Temperature Distribution and Pressure Drop through the Layered Burden Loading in a Blast Furnace

  • Yang, Kwang-Heok;Choi, Sang-Min;Chung, Jin-Kyung
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.1-6
    • /
    • 2009
  • Analysis of the internal state of the blast furnace is necessary to predict and to control the operating conditions. Especially, it is important to develop models of the blast furnace to predict the cohesive zone because shape of the cohesive zone influences overall operating conditions of blast furnace such as gas flow, chemical reactions and temperature. Because many previous blast furnace models have assumed cohesive zone to be fixed, it was not possible to evaluate the shape change of cohesive zone in relation with operating conditions such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace processes. In this model, cohesive zone is determined by the solid temperature. Finite volume method is employed for numerical simulation. To find location of the cohesive zone, entire calculation procedure is iterated until converged. Through this approach, shape of the cohesive zone, velocity and temperature within the furnace are predicted from the model.

  • PDF