• 제목/요약/키워드: Blast Vibration

검색결과 237건 처리시간 0.031초

발파시 터널 숏크리트의 최대입자속도와 부착상태평가 분석 (Analysis of the peak particle velocity and the bonding state of shotcrete induced by the tunnel blasting)

  • 홍의준;장석부;송기일;조계춘
    • 한국터널지하공간학회 논문집
    • /
    • 제12권3호
    • /
    • pp.247-255
    • /
    • 2010
  • 숏크리트의 부착강도는 천정부의 낙반방지와 발파진동에 의한 숏크리트 탈락방지에 중요한 역할을 하는 요소이다. 따라서, 숏크리트의 부착상태평가는 품질관리의 주요 요소가 될 수 있다. 본 연구는 터널 내 발파에 의하여 숏크리트에 미치는 최대 입자속도를 예측하고, 발파 진동에 의한 숏크리트의 부착상태를 평가하기 위하여 수행되었다. 이를 위하여 현재 시공중인 터널현장에서 피난연락갱의 발파시 본선부 및 서비스 터널의 발파진동을 측정하였으며 충격반향시험을 수행하여 숏크리트-암반의 부착상태를 평가하였다. 충격반향시험 신호분석을 위하여 시간-주파수 영역 해석 기법을 도입하였으며 평가결과, 국내에서 일반적으로 시행되는 발파조건에서는 숏크리트와 암반의 부착력 손실(들뜸 현상)은 거의 발견되지 않았으며, 숏크리트 부착력 손상 가능성은 낮은 것으로 판단되었다.

Development of a new explicit soft computing model to predict the blast-induced ground vibration

  • Alzabeebee, Saif;Jamei, Mehdi;Hasanipanah, Mahdi;Amnieh, Hassan Bakhshandeh;Karbasi, Masoud;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.551-564
    • /
    • 2022
  • Fragmenting the rock mass is considered as the most important work in open-pit mines. Ground vibration is the most hazardous issue of blasting which can cause critical damage to the surrounding structures. This paper focuses on developing an explicit model to predict the ground vibration through an multi objective evolutionary polynomial regression (MOGA-EPR). To this end, a database including 79 sets of data related to a quarry site in Malaysia were used. In addition, a gene expression programming (GEP) model and several empirical equations were employed to predict ground vibration, and their performances were then compared with the MOGA-EPR model using the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2) and a20-index. Comparing the results, it was found that the MOGA-EPR model predicted the ground vibration more precisely than the GEP model and the empirical equations, where the MOGA-EPR scored lower MAE and RMSE, 𝜇 and 𝜎 closer to the optimum value, and higher R2 and a20-index. Accordingly, the proposed MOGA-EPR model can be introduced as a useful method to predict ground vibration and has the capacity to be generalized to predict other blasting effects.

Vibration control, energy harvesting and forced vibration of the piezoelectric NEMS via paradox-free local/nonlocal theory

  • Zohre Moradi;Farzad Ebrahimi;Mohsen Davoudi
    • Advances in nano research
    • /
    • 제14권4호
    • /
    • pp.335-353
    • /
    • 2023
  • The possibility of energy harvesting as well as controlled vibration of a three-layered beam consisting of two piezoelectric layer and one core layer made of nonpiezoelectric material is investigated using paradox-free local/nonlocal theory. The three-layered nanobeam is resting on an elastic foundation and subjected to a blast load. Also, the core layer is made of Nano-composites reinforced by CNTs and carbon fibers (MHCD). Governing equations as well as boundary conditions are obtained using Hamilton,s principle. The equations discretized by Generalized Differential Quadrature Method (GDQM) and solved by Newmark beta method. In addition, two differential and integral gains are employed for controlling the forced vibration. The size-dependency of the elastic foundation is considered using two-phase elasticity. The effect of elastic foundation, control gains, nonlocal factor, as well as parameters affecting the core material on the forced vibration and energy harvesting is investigated in detail. The equations as well as solution procedure is validated utilizing some compassion studies. This work can be a basis for future studies on energy harvesting and controlled vibration in small scales.

수치해석을 이용한 이중보온관 발파진동 관리기준에 관한 연구 (A Study on Blasting Vibration Control Criteria for Pre-insulated Pipe through the Numerical Analysis)

  • 최봉혁;조진우;김진만;유한규
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1471-1478
    • /
    • 2013
  • 본 논문에서는 이중보온관의 발파진동 관리기준 제시를 위하여 이격거리와 매설심도를 변수로하여 수치해석을 수행하였다. 수치해석 적용 발파하중 모델은 현장시험 결과와의 비교를 통하여 검증하였다. 수치해석 결과, 이중보온관은 진동속도 4.0cm/sec 이상에서 발생 유효응력이 내관의 허용응력을 초과하거나 근접하는 것으로 나타났으며, 4.0cm/sec 이하에서 안정성이 확보되는 것으로 평가되었다. 따라서, 이중보온관의 진동관리기준은 4.0cm/sec를 초과하지 않도록 관리하여야 할 것으로 판단된다.

The effect of blast-induced vibration on the stability of underground water-sealed gas storage caverns

  • Zhou, Yuchun;Wu, Li;Li, Jialong;Yuan, Qing
    • Geosystem Engineering
    • /
    • 제21권6호
    • /
    • pp.326-334
    • /
    • 2018
  • Underground water-sealed gas storage caverns have become the primary method for strategic storage of LPG. Previous studies of excavation blasting effects on large-scale underground water-sealed gas storage caverns are rare at home and abroad. In this paper, the blasting excavation for underground water-sealed propane storage caverns in Yantai was introduced and field tests of blasting vibration were carried out. Field test data showed that the horizontal radial velocity had a major controlling effect in the blasting vibration and frequencies would not cause the vibration velocity concentration effects. In terms of the influence of blasting vibration on adjacent caverns, the dynamic finite element model in LS-DYNA soft was established, whose reliability was verified by field test data. The numerical results indicated the near-blasting side was primary zone for the structural failure and tensile failure tended to occur in the middle of the curved wall on the near-blasting side. Meanwhile, the safety criterions for adjacent caverns based on stress wave theory and according to statistic relationship between peak effective tensile stress and peak particle velocities were obtained, respectively. Finally, with Safety Regulations for Blasting in China (GB6722-2014) taken into account, a final safety criterion was proposed.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

터널발파의 수치해석적 모델링 (Numerical Modelling of Tunnel Blasting)

  • 이인모;최종원;김상균;김동현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.133-140
    • /
    • 2000
  • Drilling and blasting method for excavating rock mass is generally used in underground construction; but this technique has some shortcomings. For instance, rock mass damage is inevitable during drilling and blasting, and blast-induced vibration frequently causes some problems. Until now, field measurement method is used to predict the overbreak and vibration; but it has many limitations. Therefore, numerical analysis method is needed to overcome such limitations, and to estimate and predict damage and vibration due to tunnel blasting in the design stage. In this study, damage zone of rock mass due to stoping and contour blasting is compared based on standard tunnel blasting pattern, and the propriety of the standard tunnel blasting pattern is estimated. Then, blasting pattern is optimized so that the damage zone due to sloping blasting with reduced charge is consistent with that due to contour blasting.

  • PDF

파형합성 프로그램 개발 및 현장 적용성 평가 (A Development of Waveform Composition Program and Evaluation of Application on Site)

  • 윤지선;우택규;배상훈
    • 화약ㆍ발파
    • /
    • 제27권1호
    • /
    • pp.38-46
    • /
    • 2009
  • 최근 진동 소음을 저감하는 공법으로 초시의 정확성과 초시부여의 자율성을 가진 전자뇌관을 이용하는 공법(OBM ; Orechestra Blasting)이 소개되었다. 파형합성프로그램은 전자뇌관의 지연초시를 결정할 수 있으며 결정된 초시를 이용하여 실 발파와 유사한 환경에서의 시뮬레이션을 수행, 최적초시 상태의 진동 속도를 예측할 수 있다. 본 연구에서는 파형합성프로그램을 통해 진동을 제어하는 최적초시를 얻고 실제 발파작업 시의 진동치를 예측하고자 하였다.

발파에 의한 터널 굴착시 RMR값에 따른 인접구조물의 동적 영향 (Dynamic Influence of Tunnel Blasting on Adjacent Structures for Various RMR Values)

  • 허재록;황의석;이봉열;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.657-664
    • /
    • 2002
  • This study presents the influence of blasting-induced vibration on the adjacent structures in rocks of various RMR values. 3D finite element analysis was performed to simulate the behaviour of tunnel and adjacent structures during rock excavation. The blast loadings were evaluated from the blasting pressure which is depending on the type and amount of explosive charges. Influencing factors for the stability of adjacent structures and ground conditions were reviewed in terms of structural dimensions and RMR values. The stiffness and load of adjacent structures are modeled in the numerical analysis to Investigate blasting effects of the size of adjacent structures. The vibration velocity and maximum particle velocity was increase sharply when the RMR value changed from 30 to 50. The effect of particle velocity was minimized at the width of structure become 2 times of tunnel diameter.

  • PDF

시험발파 계측자료 분석을 통한 암석 발파진동 특성 분석 (Analysis on the Characteristics of Rock Blasting-induced Vibration Based on the Analysis of Test Blasting Measurement Data)

  • 손무락;유재하;안성수;황영철;박두희;문두형
    • 한국지반환경공학회 논문집
    • /
    • 제16권9호
    • /
    • pp.23-32
    • /
    • 2015
  • 본 논문에서는 암석발파 유발 진동에 대한 포괄적인 추세특성을 파악하기 위하여 국내 97개의 현장에서 계측된 시험발파진동에 관한 자료를 이용하여 굴착종류(터널, 벤치굴착) 및 암석종류별로 발파진동의 특성을 조사 및 검토하였다. 계측된 자료는 주로 강원도 및 경상도 지역의 시험발파 현장으로부터 획득하였으며, 계측현장 자료의 암석종류는 화강암이 제일 많았으며 그다음으로 편마암, 석회암, 사암, 셰일 순으로 나타났다. 본 연구를 통한 분석 결과, 발파진동 속도는 굴착종류(터널, 벤치)에 따라 영향을 받는 것으로 나타났으며, 터널발파에 비하여 벤치발파에 의한 진동속도가 더 크게 발생하는 것으로 나타났다. 또한 발파진동은 암석종류에 따라 크게 영향을 받는 것으로 나타나 향후 암석종류를 포함한 발파진동 추정식 관리가 필요할 것으로 나타났다. 이와 더불어 본 연구를 통해 얻어진 결과와 기존의 국내 발파진동 추정식에 의한 결과들과 상호 비교하였으며, 비교결과 터널발파에서 자승근식을 이용한 결과를 제외하곤 큰 차이가 나타나 향후 암반에서의 발파진동 추정과 관련하여 암석의 강도 및 절리특성, 지층분포, 굴착종류, 사용화약, 계측장비 및 방법 등의 영향을 종합적으로 반영한 더욱더 많은 연구 및 관심이 필요할 것으로 판단된다.