• Title/Summary/Keyword: Blank shape

Search Result 254, Processing Time 0.024 seconds

An automated CAD System of Product with Bending Constraints and Piercing for Progressive Working (구속을 갖는 굽힘 및 피어싱용 제품의 프로그레시브 가공을 위한 자동화된 CAD 시스템)

  • Choe, Jae-Chan;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.174-182
    • /
    • 1999
  • This paper describes a research work of developing a computer-aided design of product with bending constraints and piercing for progressive working. an approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, production feasibility check, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, availability of press. Strip layout drawing generated by piercing with punch profiles divide into automatically for external area is shown into graphic forms, including bending sequences for the product with piercing and bending constraints. Results obtained using the modules enable the designer and manufacturer of piercing and bending dies to be more efficient in this field.

  • PDF

Trimming Line Design using Incremental Development Method and Finite Element Inverse Method (점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계)

  • Chung, W.J.;Park, C.D.;Song, Y.J.;Oh, S.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

Process Design of Conical Roll-Shaping for Fabrication of Variable Curvature Spiral Blade (가변곡률을 가진 나선형 블레이드 제작을 위한 원추형 롤 성형 공정설계)

  • Yang, Sungmoon;Shim, Dosik;Ji, Hoseong;Baek, Joonho;Kim, Bongsik;Ahn, Seokyoung;Park, Sanghu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.911-918
    • /
    • 2016
  • A conical roll-shaping process was proposed for fabrication of a metallic spiral blade applied to a small-scale wind turbine system. A spiral blade has continuously different curvatures, with a range of 100 to 350 mm radius. To fabricate this complex shape, we developed a conical roll-shaping process having two main conical rollers for feeding a blank sheet, and two cylindrical side rollers for control of local bending. For clear understanding of the process parameters, numerical analyses were conducted using a commercial code, Pam-Stamp. This study optimized the effects of process parameters, such as gap and angle between the main rollers and side rollers, and also the movement of side rollers. In order to increase the forming efficiency, a central rotation point was also calculated by the analytical approach. This developed rolling process can thus be utilized in a sheet metal forming process for obtaining spirally curved sheet metal shapes.

A Study on Progressive Working of Electric Product by the using of Fuzzy Set Theory (퍼지 셋 이론을 이용한 전기제품의 프로그레시브 가공에 관한 연구)

  • Kim, J. H;Kim, Y. M.;Kim, Chul;Choi, J. C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.79-92
    • /
    • 2002
  • This paper describes a research work of developing computer-aided design of a product with bending and piercing for progressive working. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, strip layout and die layout modules. The system is designed by considering several factors, such as bending sequences by fuzzy set theory, complexities of blank geometry, punch profiles, and the availability of a press equipment. Strip layout drawing generated in the strip layout module is presented in 3-D graphic farms, including bending sequences and piercing processes with punch profiles divided into for external area. The die layout module carries out die design for each process obtained from the results of the strip layout. Results obtained using the modules enable the manufacturer for progressive working of electric products to be more efficient in this field.

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.

Study on Hot Stamping of the Rotating Module Upper Plate for an Autonomous Vehicle Seat (자율주행 자동차용 전동회전시트 상부회전판의 핫스탬핑 성형에 관한 연구)

  • Yook, Hyung-sub;Pyun, Jong-Kweon;Suh, Chang-Hee;Oh, Sang-Gyun;Kwon, Tae-Ha;Kim, Byung-Ki;Park, Dong-Kyou
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.44-49
    • /
    • 2021
  • Seats in autonomous vehicles must be able to rotate to fully utilize the interior space. Generally, ultra-high strength steel is used for the rotation module because it should have high strength and high rigidity. In addition, the rotating parts are difficult to form because they have complex shapes. In this study, the upper plate of the rotating module, whose complex shape makes it difficult to form, was formed by applying the hot stamping method. The drawing method and the form-drawing method, which are generally used to form components of complex shapes, were compared. We showed that the form-drawing method increased the degree of freedom of the material flow to improve the formability, thus enabling the forming of the plate. In addition, the die and blank shapes were found to be important factors in determining the success of the hot stamping. The validity of the analysis results was confirmed through forming analysis and experiments.

Characteristics of différance image in contemporary men's fashion (현대 남성 패션에 나타난 해체주의 '차연'적 표현 특성)

  • Lee, Han-na;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.3
    • /
    • pp.222-238
    • /
    • 2019
  • This study is aimed at applying the philosophical concept of "$diff{\acute{e}}rance$" to contemporary men's fashion design, which could effectively show the shift in thinking. For the study method, the author examined the theoretical background of deconstruction and prepared the standard of analysis by organizing the concept of "$diff{\acute{e}}rance$," which exists at the center of philosophy. This study selected the three most popular brands: Maison Margiela, Comme des Garcons, and Yohji Yamamoto. The results are as follows. First, there is expression of perpetual reservation emphasizing time. This includes texture, patchworks, hems with ladder, and exposure of seam that expresses the trace of time flow and delayed delivery of immediate meaning, and the expression creates delay between major and minor and leads to consistent role exchange. Second, the trace of blank that emphasizes the space gives a visual sense of weight on spares with the intentionally granted space, as well as the space that is the trace of trace and creates a sense of depth through the direction of empty space. Third, the space created in the process of wearing cloth is visualized, the structure of clothing is deconstructed, and the movement from the process recomposes the shape of space and expands the definition that enables expansion of time and space. Fourth, the undetermined relationship expresses the border of time and space visually and deconstructs time and space. The approaches are mostly constructive, demonstrating an avant-garde form of clothes-wearing to show the non-form or imbalance condition.

A Study for In-process Monitoring in Press die (프레스금형 형내 모니터링에 대한 연구)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.692-696
    • /
    • 2017
  • The shape of press components is becoming increasingly complex due to customer demands, process shortening and cost savings. In addition, the stability of the pressing process frequently varies during mass production due to the influence of many factors. In order to ensure the process stability, it is necessary to establish a process in which reproducibility is realized in tolerance, which is sufficient for advance study of shape, material, press, mold and lubrication. However, unforeseen changes in process parameters cause disruptions in production line shutdowns and production planning. In this paper, we introduce a method to monitor a real time process by applying a sensor to a press mold. A non-contact type sensor for measuring the flow of a sheet material and an example of an experiment using the optical sensor which is highly applicable to mass production are presented. An optical sensor was installed in a cylindrical drawing mold to test its potential application while changing the material, blank holder force, and drawing ratio. We also quantitatively determined that the flow of other sheet materials was quantified locally using a square drawing die and that the measured value was always smaller than the drawing depth due to the material elongation. Finally, we propose a field that can be used by attaching the sensor to the press mold. We hope that the consequent cost reduction will contribute to increasing global mold competitiveness.

Process Design of Trimming to Improve the Sheared-Edge of the Vehicle Door Latch based on the FE Simulation and the Taguchi Method (유한요소해석 및 다구찌법을 이용한 자동차 도어 래치의 전단면 품질 향상을 위한 트리밍 공정 설계)

  • Lee, Jung-Hyun;Lee, Kyung-Hun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.483-490
    • /
    • 2016
  • Automobile door latch is a fine design and assembly techniques are required in order to produce them in a small component assembly shape such as a spring, injection products, a small-sized motor. The door latch is fixed to not open the door of the car plays an important role it has a direct impact on the driver's safety. In this study, during trimming of the terminals of the connector main components of the car door latch, reduce rollover and conducted a research to find a suitable effective shear surface. Using the Taguchi method with orthogonal array of Finite Element Analysis and optimal Design of Experiments were set up parameters for the shear surface quality of the car door latch connector terminals. The design parameters used in the analysis is the clearance, the radius, and the blank holding force, the material of the connector terminal is a C2600. Trimming process optimum conditions suggested by the analysis has been verified by experiments, the shear surface shape and dimensions of a final product in good agreement with forming analysis results.Taguchi method from the above results in the optimization for the final rollover and effective shear surface improved for a vehicle door latch to the connector terminal can be seen that the applicable and useful for a variety of metal forming processes other than the trimming process is determined to be applicable.

Analysis of the Dead Layer Thickness effect and HPGe Detector by Penelope Simulation (Penelope Simulation에 의한 불감층 두께 효과 및 HPGe 검출기 분석)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.801-806
    • /
    • 2018
  • Germanium crystals have a dead layer that causes efficiency deterioration because the layer is not useful for detection but strongly weakens the photons. Thus, when the data provided by the manufacturer is used in the detector simulation model, there is a slight difference between the calculated efficiency and the measured efficiency.The shape and dimensions of the high purity germanium (HPGe) detector were determined by CT scans to accurately characterize the shape for the Monte Carlo roll simulation. It is found that the adjustment of the dead layer is a good match with the relative deviation of ${\pm}3%$ between the measurement efficiency and the simulation efficiency at the energy range of 50 - 1500 keV. Simulation data were compared by varying the thickness of the dead layer. The new Monte Carlo simulations were compared with the experimental results to obtain new blank layer thicknesses. The difference in dead layer results for the 1.5 mm thick end cap simulation model in 1.4 and 1.6 mm thick End Cap simulation models was a systematic error due to the accuracy of the end cap dimensions. After considering all errors including statistical errors and systematic errors, the thickness of the detector was calculated as $1.02{\pm}0.14mm$. Therefore, it was confirmed that the increase in the thickness of the dead layer causes the effect to be effected on the efficiency reduction.