• Title/Summary/Keyword: Blank geometry optimization

Search Result 6, Processing Time 0.019 seconds

Optimization of blank geometry for the stamping process of B-pillar using design of experiments (실험 계획법을 사용한 B-Pillar 성형공정에서 블랭크 형상 최적화)

  • Youn, Hyung-Won;Choi, Yong-seok;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.17-22
    • /
    • 2021
  • The shape of the blank greatly affects the formability and quality of the product after the stamping process. In this study, the geometry of the B-Pillar blank in the stamping process was optimized using design of experiments. The geometry of the blank for the B-pillar was simplified with the two length values and two radius values. The effects of design variables were studied through the Design of experiments. The stamping process of the B-pillar was predicted with the Finite Element Analysis (FEA). The optimized blank geometry was obtained. It results in the reduced maximum equivalent plastic strain. The local necking and the wrinkling did not occurred with the optimized blank geometry.

Optimization of Initial Blank Shape of Multi-stage Deep Drawing for Improvement of Formability (타원형 다단 딥 드로잉 제품의 성형성 향상을 위한 초기 소재 형상 최적 설계)

  • Lee, Sa-Rang;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.696-701
    • /
    • 2016
  • Multi-stage deep drawing is a widely used industrial manufacturing process, and its applications are gradually expanding to both small products and large metallic products. The USB C-type socket used in smart phones, for example, is manufactured using oval multi-stage deep drawing. The socket is very small and slender and it requires precise manufacturing. The thickness distribution of the final product is guaranteed only if it is uniform throughout the overall process. Therefore, minimizing the height difference between long and short sidewalls after the first operation is important for this goal. An initial blank optimization was performed for an oval-type drawing process based on finite element simulations. The goal was to determine an initial blank geometry that can maintain uniform height and thickness after the first draw operation. The initial blank shape of the sheet metal was optimized, and the results show that it satisfied the conditions of minimal thickness reduction and even thickness distribution. The geometry from the optimized simulation was compared with experimental results, which showed good agreement.

Process Design for Profile Ring Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 형상 링 압연 공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.357-360
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was designed by finite element(FE) simulation and experimental analysis. The design includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

A Study on Profile Ring Rolling Process of Titanium Alloy (타이타늄합금 형상 링 압연공정 연구)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.223-228
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was investigated by finite element(FE) simulation and experimental analysis. The process design of the profile ring rolling includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

Process Design for Large-Scale Ring-Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 대형 링 압연공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.172-177
    • /
    • 2007
  • The process design for large-scale ring rolling of Ti-6Al-4V alloy was performed by calculation method, processing map approach and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was used to make geometry design such as initial billet and blank sizes, and final rolled ring shape. A commercial FEM code, SHAPE-RR was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling and the formation of over-heating above $\beta$-transus temperature due to deformation heating, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.