• 제목/요약/키워드: Blank Holding Force

검색결과 96건 처리시간 0.025초

비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상 (Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path)

  • 정현기;장은혁;송윤준;정완진
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

3차원 박판금속 성형해석에서의 블랭크 홀딩력 적용방법에 관한 연구 (An Improved Scheme for the Blank Holding Force in 3-D Sheet Metal Forming Analysis)

  • 최태훈;허훈;이충호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.93-97
    • /
    • 1997
  • Since the modified membrane element has the same external appearance as the ordinary membrane element, it is not able to apply the thickness variation of sheet metal in the blank holder to the contact treatment and the equally distributed blank holding force should be inevitably imposed on sheet metal along the periphery regardless of the contact status. But sheet metal does not contact with the blank holder at the periphery, nor the blank holding force is distributed uniformly along the boundary. To impose the blank holding force properly, the scheme is improved so that the blank holding force at each node imposed on sheet metal is dependent on the calculated thickness derivation and a state of equilibrium with the total blank holding force. The validity of the improved scheme is demonstrated with the simulation of cylindrical and rectangular cup deep drawing.

  • PDF

박판성형 마찰거동에 미치는 블랭크 홀딩력의 영향 (Effects of Blank Holding Force on Friction Behavior in Sheet Metal Forming)

  • 심진우;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.394-396
    • /
    • 2007
  • In this study, in order to see effect of the blank holding force on the friction behavior in the sheet metal forming, a sheet metal friction tester is designed and manufactured, which can measure friction forces in various forming conditions, such are lubrication, die roughness, drawing speed, radius of die corner, blank holding force, etc., and performed the friction test in which friction coefficients in various blank holding forces and pulling speeds are calculated using Coulomb's friction law. The friction test reveals that friction coefficient decreases maximum 30% as the blank holding force and the drawing speed are increased to 2.5kN and 1500mm/min, respectively.

  • PDF

박판성형 마찰거동에 미치는 블랭크 홀딩력의 영향 (Effects of Blank Holding Force on the Friction Behavior in Sheet Metal Forming)

  • 심진우;금영탁
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.381-385
    • /
    • 2007
  • In order to examine the effect of the blank holding force on the friction behavior in the sheet metal forming, a sheet metal friction tester is designed and manufactured, which can measure friction forces in various forming conditions such as lubrication, die roughness, drawing speed, radius of die corner, blank holding force, etc., and the friction tests are performed, in which friction coefficients in various blank holding forces and pulling speeds are calculated using Coulomb's friction law. The friction test reveals that friction coefficient decreases as the blank holding force, the drawing speed and lubricant viscosity increase together or individually.

굽힘이 고려된 개량 박막 유한요소를 사용한 박판금속 성형해석에서의 블랭크 홀딩력 적용방법에 관한 연구 (An Improved Scheme for the Blank Holding Force in Sheet Metal Forming Analysis using the Modified Membrane Finite Element Considering Bending Effect)

  • 최태훈;허훈
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.347-355
    • /
    • 1999
  • The paper is concerned with an improved scheme for application of the blank holding force in order to take account of the thickness distribution in the sheet material of the flange region. The scheme incorporates with a modified membrane finite element method for planar anisotropic materials. The new scheme proposed two coefficients α and βto calculate the compressive stress in the sheet metal due to the blank holding force, which should be determined properly for accurate analysis. The effect of αand βon the blank holding force distribution and the deformed shape is investigated with simulation of rectangular cup deep drawing processes by changing parameter values.

  • PDF

해석적인 방법을 이용한 복잡한 형상의 자동차 부재 스탬핑 공정에서의 주요 설계인자 연구 (Study on Design Parameters in a Stamping Process of an Automotive Member with the Simulation-based Approach)

  • 송정한;김세호;김승호;허훈
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2005
  • This paper is concerned with the quantitative effect of design parameters on a stamped part of the auto-body. The considered parameters in this paper are the blank holding force, the draw-bead force, the blank size which greatly affect the metal flow during stamping. The indicators of formability selected in this paper are failures such as tearing, wrinkling and the amount of springback. The stamping process of the front side inner member is simulated using the finite element analysis changing the design parameters. The numerical results demonstrate that the blank holding force cannot control the local metal flow during forming although it controls the overall metal flow. The modification of the initial blank size considering the punch opening line ensures the local wrinkling and reduces the amount of springback after forming. The restraining force of draw-bead controls the metal flow in the local area and reduces the amount of excess metal. It is noted that the parametric study of design parameters such as blank holding force, the blank size and the draw-bead are very important in the process design of the complicated member.

극박판 사각 드로잉에 있어서 드로잉속도와 블랭크홀딩력의 영향 (Influence of Drawing Speed and Blank Holding Force in Rectangular Drawing of Ultra Thin Sheet Metal)

  • 이준형;정완진;김종호
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.348-353
    • /
    • 2012
  • Micro-drawn parts have received wider acceptance as products become smaller and more precise. The subject of this study was the deformation characteristics of ultra thin sheet metal in micro drawing of a rectangular shaped part. The influence of drawing speed and blank holding force on the product quality was investigated in micro-drawing of ultra thin sheet of beryllium copper (C1720) alloy. The specimen had a diameter of 4.8 mm and a thickness of $50{\mu}m$. Experiments were carried out in which, different blank holding force and drawing speed were considered. The product quality was evaluated by measuring the thickness and hardness along two specified directions, namely, the side and diagonal directions. The distribution of the thickness strain showed severe thinning especially around the punch radius in both directions. In the diagonal direction, thickening occurred in the flange area due to the axi-symmetric drawing mode. The increase of blank holding force and/or drawing speed was found to cause severe thinning around the punch radius. The blank holding force had a greater effect on thinning of the product than the drawing speed.

블랭크 홀딩력 조절을 통한 성형성 향상에 관한 수치적 연구 (A Numerical Study on formability improvement by adjusting blank holding force)

  • 최현석;정완진
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.31-35
    • /
    • 2016
  • In sheet metal forming process, drawing is typical process. And the key factor of drawing is blank holding force (BHF) A low BHF can cause wrinkling, whereas a high BHF can cause fracture during a deep drawing process. Thus, formability can be influenced by application appropriate BHF. In this study, a variable blank holding force (VBHF) is applied to extend the forming limit by avoiding both wrinkling and fracture. To determine VBHF in drawing process, numerical simulations and statistical analysis are carried out using commercial FEM software.

프레스가공의 최적 성형범위에 미치는 강판특성 및 윤활조건의 영향 (The effect of sheet steel properties and lubrication on the optimal range of blank holding force of stamping processes)

  • 박기철;최원집
    • 소성∙가공
    • /
    • 제3권3호
    • /
    • pp.335-346
    • /
    • 1994
  • The effect of sheet steel properties and lubrication on the optimal range of blank holding force (BHF) was investigated by means of the model die stamping of various sheet steels. The optimal range of blank holding force was expressed as the range between the lower BHF at flange wrinkling and the upper BHF at local necking. It showed that mechanical properties, thickness of sheet steel and lubrication condition were important factors affecting the optimal range of BHF in sheet steels. Especially, lubrication played an important role in the case of coasted sheet steels.

  • PDF

AZ31B 마그네슘판재의 온간, 열간 딮드로잉 성형성 평가 (The Drawbility Estimation in warm and Hot Forming of AB31B Magnesium Sheet)

  • 추동균;오세웅;이준희;강충길
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.628-634
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures (200, 250, 300, 350, $400^{\circ}C$), forming speeds (20, 50, 100mm/min), thicknesses (0.8, 1.4mm) and blank holding forces (2.0, 2.8, 3.4kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiments show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 2.0kN blank holding force. The 0.8mm magnesium sheets were deformed better than 1.4 mm. Blank holding force was controlled in order to improve drawability and prevent the change of cup thickness. When blank holding force was controlled, tearing and thickness change were decreased and limit drawing ratio was improved from 2.1 to 3.0.