• Title/Summary/Keyword: Blank Design

Search Result 304, Processing Time 0.022 seconds

A Study on Profile Ring Rolling Process of Titanium Alloy (타이타늄합금 형상 링 압연공정 연구)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.223-228
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was investigated by finite element(FE) simulation and experimental analysis. The process design of the profile ring rolling includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

Optimal Design of Lightweight High Strength Door with Tailored Blank (합체박판 기술을 적용한 고장도 경량도어 최적 설계)

  • 송세일;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.174-185
    • /
    • 2002
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. Tailored blanks offer the opportunity to decrease door weight, reduce manufacturing costs, and improve door stiffness. Optimization technology is applied to the inner panel of a door which is made by tailored blanks. The design of tailored blanks door starts from an existing door. At first, the hinge reinforcement and inner reinforcement are removed to use tailored blanks technology. The number of parts and the welding lines are determined from intuitions and the structural analysis results of the existing door. Size optimization is carried out to find thickness while the stiffness constraints are satisfied. The door hinge system is optimized using design of experiment approach. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

A Study on the Computer-Aided Design System of Axisymmetric Deep Drawing Process(II) (축대칭 디프 드로잉 제품의 공정설계 시스템에 관한 연구(II))

  • Park, S.B.;Choi, Y.;Kim, B.M.;Choi, J.C.;Lee, J.
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.61-71
    • /
    • 1996
  • A computer-aided process design system for axisymmetric deep drawing products has been developed. An approach to the system is based on the knowledge based system. Knowledges for the system are formulated from the plasticity theory handbooks experimental results and empirical knowhow of the field experts. the system is composed of four main modules such as geometrical design test & rectification and user modification. The input to the system is final sheet-metal object geometry and the output from the system is process sequence with intermedi-ate objects geometries and process parameters, such as drawing load blank holding force clearance cup-drawing coefficient.

  • PDF

Identification of Forming Limits of Sheet Metals for Automobile Parts by Asymmetric Deep-drawing Experiments (비대칭 시편의 딥드로잉 실험에 의한 박판금속의 성형한계도)

  • Heo, Hun;Lee, Chung-Ho;Jeong, Jae-Ung
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.81-93
    • /
    • 1998
  • Identification of forming limits of sheet metals is an important task to be done before the sheet metal forming processes. The information of the forming limit is indispensable for design of deformed shapes and related forming processes. This procedure becomes more important than ever as the auto-body becomes complicated and the number of auto-body parts is reduced for lower production cost. To identify the forming limit of sheet metals stretching with a hemispherical punch has gained popularity because of the convenient experimental procedure. The stretching experiment however has localized deformation or the shear band is originated from the non-unifrom deformation in the critical circum-stance instead of the absolute criterion. More accurate information of the forming limit therefore could be obtained by a more appropriate experiment to the real process. In this papaer an experiment program is devised to practivally identify the forming limits of sheet metals for auto-body parts. The experiment program contains not only stretching but deep-drawing Both forming experiments use the same hemispherical punch while they use different specimens. Deep-drawing experiments use speci-mens cut out in circular arc on both sides of circular blank to make it torn during the deep-drawing They also use speciments cut out straight in one side of a circular blank to make it deformed unevenly which causes local deformation during the deep-drawing. The experimental result demonstrates that the forming limit diagrams in the two cases show difference in their effective magnitude. The forming limit curve from deep-drawing is located lower than that from stretching. It is noted from the result that the deep-drawing process causes acceleration of localized deformation in comparison with the stretching process. From the experimental result the maximum value of forming limit could be pre-dicted for safe design.

  • PDF

Simulation and Experimental Investigation of Reverse Drawing Process for Manufacture of High-Capacity Aluminum Liner (대용량 알루미늄 라이너의 성형을 위한 역 드로잉 공정 해석 및 실험)

  • Lee, Seungyun;Cho, Sungmin;Lee, Sunkyu;Lyu, Geunjun;Kim, Soyoung;Kang, Sunghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.78-84
    • /
    • 2016
  • In this work, finite element investigations were carried out to optimize reverse drawing process design for manufacture of high-capacity aluminum liner used in fuel cell vehicle. The tensile tests with aluminum alloy Al6061 annealed at $350^{\circ}C$ were carried out to obtain the flow stresses. In order to estimate more accurate flow stresses after necking, the flow stresses were estimated from the comparison of load vs. displacement curves which were obtained from experimental and simulation results of tensile tests. In case of finite element analyses of reverse drawing processes, it was focused on the effects of process designs such as punch and die designs, blank holding force, drawing ratio and the clearance between the punch and blank holder on the generation of wrinkle and fracture of the blank and partially heated punch. However, it was revealed that experimental results still show the fracture at the end of 2nd drawn cup, although partially heated punch is used. Nevertheless, the drawn cup can be used because the sufficient length of the drawn cup for the next flow forming process and spinning process was obtained.

Process Design and Finite Element Analysis of Rectangular Cup used for Ni-MH Battery with High Aspect Ratio (니켈-수소 2차 전지용 고세장비의 직사각 컵에 대한 성형공정 설계 및 유한요소해석)

  • Ku, T.W.;Kim, H.Y.;Song, W.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.170-181
    • /
    • 2008
  • The shape of rectangular cup used for Ni-MH(Nickel-coated Metal Hydrogen) battery for hybrid car looks quite simple, but the forming process of extruding and setting up process design are highly difficult. Furthermore, there are few concrete reports on the rectangular deep drawn cup as part of hybrid vehicles till now. In this study, process design for rectangular cup in the multi-stage deep drawing process is carried out, and FE analysis is also preformed based on the result of the process design. From the simulation result, some unexpected problems such as earing, wrinkling and excessive thickness changes of the intermediate blank occurred. To overcome these failures, a series of modification for punch shape in the forming process design are completed and applied. Considering the modified punch shape in the multi-stage deep drawing process, additional FE analysis is also carried out and the simulation result is verified in view of the deformed shape, thickness change and effective strain distribution. The result of FE analysis with the improved process design confirmed not only reducing thinning of wall and possibilities of failure but also improving the quality of drawing product through the modification of punch shape.

An automated process planning 8 die design using expert system for blanking or piercing of irregular shaped sheet metal products (불규칙성 박판제품의 프로그래시브 다이설계를 위한 자동화된 CAD시스템)

  • Kim, J. H.;Kim, C.;Choi, J. C.;Kim, B. M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.214-218
    • /
    • 1995
  • Much labor, an exceedingly long lead time, and the skills of experienced engineers are required for press tool design. To reduce such problems, several CAD systems for blanking or piercing have been developed. This paper describes a computer-aided design for blanking or piercing of irregularly shaped sheet metal products. An approach to the system is based on knowledge base rules. The process planning & die design system is designed by considering several factors, such as complexity of blank geometry, punch profile, and availability of press equipment and standard parts. Therefore, after checking a production feasibility for irregular shaped sheet metal products, this system which is implemented strip layout module can carry out a process planning and generate the strip layout in graphic forms. Also this system implemented die layout module can carry out a die design for each process which is obtained form the result of an automated process planning and generate parts and assembly drawing of a die set.

  • PDF

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

Design of Hydraulic & Control System for the Disc Spinning Machine (디스크 스피닝 성형기의 유압 및 제어시스템 설계)

  • Gang, Jung-Sik;Park, Geun-Seok;Gang, E-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.157-165
    • /
    • 2002
  • The design of hydraulic & control system has been developed for the disc spinning machine. The hydraulic system has been designed in the overall system including the vertical & horizontal slide fur spinning works which are controlled by hydraulic servo valves in right & left side, and the clamping slide for holding & pressing blank material in center during spinning process. Based on the design concept of this hydraulic system, model test experiments for hydraulic servo control system is tested to conform confidence and applying possibility. The control system is introduced with the fuzzy-sliding mode controller for the hydraulic force control reacting force as a disturbance, because a fuzzy controller does not require an accurate mathematical model for the generation of nonlinear factors in the actual nonlinear plant with unknown disturbances and a sliding controller has the robustness & stability in mathematical control algorithm. We conform that the fuzzy-sliding mode controller has a good performance in force control for the plant with a strong disturbance. Also, we observe that a steady state error of the fuzzy-sliding mode controller can be reduced better than those of an another controllers.

Process Design and Forming Analysis of Permalloy Shielding Can for Instrument Cluster (자동차 계기판용 퍼멀로이 실딩 캔의 성형해석 및 공정설계)

  • Kim, Dong-Hwan;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.177-185
    • /
    • 2001
  • This study shows the process design and forming analysis of permalloy shielding can that support the automobile multi-display parts to indicate the accurate information of car. This study is particularly important, since the strain and thickness of permalloy shielding can is known to affect the magnetic properties such as coercivity and permeability quite thickness of permalloy shielding can is known to affect the magnetic properties such as coercivity and permeability quite sensitively. The objective functions are strain and thickness deviation. The punch radius, die radius and blank holding force are considered as design parameters. Orthogonal array (OA) table and characteristics are applied to neural network (NN) as train data. After training, the optimal and robust condition of design parameters is selected. This study shows the correlation between the design methodology of NN and the statistical design of experiments (DOE) approach.

  • PDF