• Title/Summary/Keyword: Blaine

Search Result 74, Processing Time 0.024 seconds

Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete (알칼리 자극제로서 미분시멘트와 순환골재가 고로슬래그 다량치환 콘크리트의 공학적 특성 및 미세구조에 미치는 영향)

  • Han, Min-Cheol;Lee, Hyang-Jae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.602-608
    • /
    • 2013
  • The aim of this study is to investigate experimentally the effect of the combination of fine particle cement with high Blaine fineness (FC) and recycled aggregates on the engineering properties and micro structure of high volume blast furnace slag (BS) concrete with 75% BS and 21 MPa. FC manufactured by particle classification at the plant with Blaine fineness of more than $7000cm^2/g$ was used as additional alkali activator for high volume blast furnace slag concrete made with recycled fine and coarse aggregates. FC was replaced by 15, 20 and 25% OPC. Test results showed that the incorporation of FC resulted in an increase in the compressive strength compared to BS concrete without FC by as much as 30% due to accelerated hydration and associated latent hydraulic reaction. It was found that the use of FC and recycled aggregates played an important role in activating BS for high volume BS concrete by offering sufficient alkali.

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Study on the Effect of Fineness and Substitution Rate of Natural Zeolites on Chemical Reaction and Physical Properties of Cement Mortar (천연 제올라이트의 분말도와 치환율이 시멘트모르타르의 화학반응 및 물리적 특성에 미치는 영향에 관한 연구)

  • Yoon, Chang-Bok;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.96-103
    • /
    • 2020
  • As a basic study for the application of natural zeolite as a concrete admixture, the compressive strength, activity factor, Ca(OH)2 quantitative analysis and XRD experiments were investigated. It is thought that SiO2, which is abundant in natural zeolite, affects the strength development by reacting with the hydration product of cement in all specimens in which natural zeolite was added according to powder level and substitution rate. As the substitution rate increases, the compressive strength decreases, which is considered to be due to the decrease in the amount of C3S and C2S minerals in the clinker, which affects the strength expression compared to the cement content of the reference mortar. The XRD crystal structure did not show a significant difference from the reference mortar, and it was confirmed that the Z2-10 (Blaine: 15,600㎠ / g) specimen with 10% substitution of natural zeolite was the best among the experimental levels. Substitution amount for use as concrete admixture is 10% substitution is most ideally seen.

Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash (분쇄된 플라이애시를 혼합한 3성분계 시멘트의 유동특성)

  • Park, Hyo-Sang;Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • In this study, rheological properties of ternary system cement containing ground fly ash(F3, Blaine specific surface area $8,100\;cm^2/g$) were investigated using mini slump, coaxial cylinder viscometer and conduction calorimeter. In the results, the segregation resistance was observed at high W/B and PC area while the replacement ratio of F3 was increasing. The 2:5:3 system was shown in higher fluidity and lower hydration heat than 3:4:3 system. The segregation range of cement pastes occurred over 175 mm in average diameter by mini slump and below $10\;dynesec/cm^2$ of the plastic viscosity or below 50 cP of the yield stress by coaxial cylinder viscometer. It was observed that even if BFS and FA blended together admixture properties would remaine as they were separately. The properties of admixture would not be changed. On the above results, the decreased replacement ratio of OPC and increased replacement ratio of admixtures would be possible.

Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements (스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구)

  • Yoo, Tae Seok;Ryu, SungWoo;Kim, Jin Cheol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

Optimization of Curing Regimes for Precast Prestressed Members with Early-Strength Concrete

  • Lee, Songhee;Nguyen, Ngocchien;Le, Thi Suong;Lee, Chadon
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.257-269
    • /
    • 2016
  • Early-strength-concrete (ESC) made of Type I cement with a high Blaine value of $500m^2/kg$ reaches approximately 60 % of its compressive strength in 1 day at ambient temperature. Based on the 210 compressive test results, a generalized rateconstant material model was presented to predict the development of compressive strengths of ESC at different equivalent ages (9, 12, 18, 24, 36, 100 and 168 h) and maximum temperatures (20, 30, 40, 50 and $60^{\circ}C$) for design compressive strengths of 30, 40 and 50 MPa. The developed material model was used to find optimum curing regimes for precast prestressed members with ESC. The results indicated that depending on design compressive strength, conservatively 25-40 % savings could be realized for a total curing duration of 18 h with the maximum temperature of $60^{\circ}C$, compared with those observed in a typical curing regime for concrete with Type I cement.

Study on the Properties of Field Applied Non-Curing Concrete in Winter Season (동절기 무양생 콘크리트의 현장적용 성능 평가에 관한 연구)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom;Kim, Hyeong-Cheol;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.413-419
    • /
    • 2016
  • In the cold-weathering concrete construction, it is important to ensure stable strength development of concrete in a low temperature environment. In this study, Non-curing cement(NCC) using the classified high fineness cement and self-heating powder was investigated for stable strength development without curing in a low temperature environment (less than $0^{\circ}C$). The actual size Mock-Up tests by various cement type and curing condition are performed to evaluate the strength development and hydration heat of concrete.

Analysis of the Correlation Between the Density of the Hydrometer Method and Fly Ash Fineness in Acceptance Inspection (인수검사시 Hydrometer법의 밀도 값과 플라이애시의 분말도간 상관관계 분석)

  • Moon, Byeong-Yong;Hyun, Seong-Yong;Lee, Jae-Jin;Song, Heung-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.20-21
    • /
    • 2017
  • There have been reports in the media about some refineries that omit the refining process and deliver raw material for reasons of cost reduction, shortening of production time, etc. Also, in most RMC factories acceptance inspection is not conducted on account of issues with the proficiency of the equipment and cost issues; instead only scores are relied upon. Therefore this study sought to analyze the relation between the value of the density of FA actually delivered to RMC companies, attained with the Hydrometer method, and its fineness, to see whether the quality of FA can be evaluated statistically. Results led to the conclusion that there is a problem in terms of credibility in the fineness of FA shown on the test report. Upon analyzing the difference between the fineness of FA as measured using Blaine's air permeability method and its density of the Hydrometer method, the correlation was found to be satisfactory; therefore the possibility of a FA fineness quality evaluation could be proved as well.

  • PDF

A Study of Effecting Factor in the Reology and Physical Properties of Cements (시멘트 유동성과 물성에 미치는 영향인자에 관한 연구)

  • 엄태선;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1027-1036
    • /
    • 1997
  • The reology and several physical properties of cements are studied by varying the different mineral composition and particle size distribution(PSD) of cements with closed circuit ball mill for high workability, low heat of hydration, and high strength. In this study, we found that the workability of concretes is related to the viscosity of cement, and affects to strength. Here, this workability is affected by mineral composition (C3A) and the PSD. Especially, rosin-rammer index and 44${\mu}{\textrm}{m}$ residue in the PSD of cements are affected to water demand, casting property, slump loss, strength of cements. From the above results, the conditions of cement for high workability, low heat of hydration and high strength are to use low C3A clinker, 5-10% slag addition, and to grind cement below 0.7 rosin-rammer index, above 3.5-4.5% 44 ${\mu}{\textrm}{m}$ residue, 4000$\pm$100 $\textrm{cm}^2$/g blaine. Such cements are, therefore, supurior to super low heat cement and slag-blended cement in comparing the physical properties of strength, slump, slump-flow, adiabetic temperature, etc.

  • PDF

Analyzing the compressive strength of clinker mortars using approximate reasoning approaches - ANN vs MLR

  • Beycioglu, Ahmet;Emiroglu, Mehmet;Kocak, Yilmaz;Subasi, Serkan
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • In this paper, Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) models were discussed to determine the compressive strength of clinker mortars cured for 1, 2, 7 and 28 days. In the experimental stage, 1288 mortar samples were produced from 322 different clinker specimens and compressive strength tests were performed on these samples. Chemical properties of the clinker samples were also determined. In the modeling stage, these experimental results were used to construct the models. In the models tricalcium silicate ($C_3S$), dicalcium silicate ($C_2S$), tricalcium aluminate ($C_3A$), tetracalcium alumina ferrite ($C_4AF$), blaine values, specific gravity and age of samples were used as inputs and the compressive strength of clinker samples was used as output. The approximate reasoning ability of the models compared using some statistical parameters. As a result, ANN has shown satisfying relation with experimental results and suggests an alternative approach to evaluate compressive strength estimation of clinker mortars using related inputs. Furthermore MLR model showed a poor ability to predict.