• Title/Summary/Keyword: Blade-To-Blade

Search Result 3,209, Processing Time 0.027 seconds

Design of Unequally-Spaced Blade Arrangement for Tonal Noise Reduction (순음성 소음의 분산을 위한 부등간격 블레이드 설계 연구)

  • Kim, Wan-Gi;Yun, Jong-Hak;Han, Seong-Su;Jeon, Se-Jong;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1047-1054
    • /
    • 2000
  • A numerical simulation was made to delineate the re-distribution of tonal noise generated from the equally-spaced blade passing frequency (BPF). A pressure-wave model was employed to analyze the tonal noise. An optimal solution for diversifying the tonal peak noise was obtained by rearranging the unequally-spaced blade angles. This was based on the fact that the noise energy is transferred from BPF to the neighboring frequency band. A limit condition for the minimum blade angle spacing was imposed. The unbalancing problem was also considered to avoid the weight bias.

Monitoring of Wafer Dicing State by Using Back Propagation Algorithm (역전파 알고리즘을 이용한 웨이퍼의 다이싱 상태 모니터링)

  • 고경용;차영엽;최범식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.486-491
    • /
    • 2000
  • The dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But inferior goods are made under the influence of several parameters in dicing such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using neural network in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, five features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision, back-propagation neural network is adopted to classify the dicing process into normal and abnormal dicing, and normal and damaged blade. Experiments have been performed for GaAs semiconductor wafer in the case of normal/abnormal dicing and normal/damaged blade. Based upon observation of the experimental results, the proposed scheme shown has a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 6.5%.

  • PDF

Structural Analysis and Test of Composite Wind Turbine Blade (풍력발전기용 복합재 윈드터빈 블레이드의 구조해석 및 실험)

  • Jung Sung-Hoon;Park Ji-Sang;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.121-124
    • /
    • 2004
  • The purpose of this study is to define the optimized layer pattern of composite wind turbine blade by using a commercial FEM program and to perform the fatigue test of T-Bolt. FEM analysis is done by using a PATRAN and ABAQUS to get a information about stress distribution ,critical deformation shape and get a critical load factor in local buckling analysis. As a result of the linear and nonlinear structural analysis, layer pattern of blade was optimized. T-Bolt is a connecting part of wind turbine blade and rotor hub, therefore T-bolt is cirtical part of wind turbine blade. T-bolt fatigue test is conducted to get a information of life cycle of T-bolt. The test is done by using a hydraulic actuator system

  • PDF

Structural Design for 2kW Class Wind Turbine Blade by using Design of Experiment (실험계획법을 이용한 2kW급 풍력발전용 블레이드에 대한 구조설계)

  • Lee, Seung-Pyo;Kang, Ki-Weon;Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • In this paper, structural design for 2kW class composite blade is performed by using design of experiment(DOE). A full factorial design is applied to meet the design specifications at the manufacturing process. The analysis of variance(ANOVA) is made in order to determine the significance of effects in an analysis. Structural analysis by using of commercial software ABAQUS is performed to compute the displacement and safety factor of filament wound composite blade. The results show that the proposed method is suitable to analyze the factors at the design of wind turbine blade.

Efficiency Evaluation of Wind Power Blade Surface Cleaning using Brush and Water Jet (브러시 및 워터젯을 이용한 풍력 발전 블레이드 표면 청소 효율 측정)

  • Jeon, Minseok;Kim, Byunggon;Park, Sora;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.977-982
    • /
    • 2013
  • Blades of wind energy plants are exposed to external shocks or internal cracks during operation. Furthermore, the blade surfaces can be contaminated by substances such as dust, blood of birds, salt or insects which can decrease the electricity generation efficiency significantly. For this reason, many blade cleaning companies started to appear and a variety of methods for cleaning were suggested. Despite these diverse methods, there has been no study to investigate how effectively to clean the substances in quantitative manner. In this paper, the cleaning efficiency of two rotor blade cleaning methods, brush and water-jet, is examined through experiments by changing operating parameters. Then, the optimal operating conditions for both methods are derived.

Structural Design and Analysis for Small Wind Turbine Blade (초소형 풍력발전용 블레이드에 대한 구조설계 몇 해석)

  • Lee, Seung-Pyo;Kang, Ki-Weon;Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.288-294
    • /
    • 2010
  • In recent years, wind energy has been the world's fastest growing source of energy. This paper describes the structural design and analysis of composite blade for 2 kW-level HAWT (horizontal axis wind turbine). The aerodynamic design and force, which are required to design and analyze a composite blade structurally, are calculated through BEMT(blade element momentum theory) implemented in public code PROPID. To obtain the equivalent material properties of filament wound composite blades, the rule-of-mixture is applied using the basic material properties of fiber and matrix, respectively. Lay-up sequence, ply thickness and ply angle are designed to satisfy the loading conditions. Structural analysis by using commercial software ABAQUS is performed to compute the displacement and strength ratio of filament wound composite blades.

Modal Analysis of a Rotating Packet Blade System having a Crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1244-1251
    • /
    • 2009
  • In this paper the vibrational behavior of a multi-packet blade system having a cracked blade is investigated. Each blade is assumed as a slender cantilever beam. The coupling stiffness effect that originates from either disc flexibility or shroud is considered in the modeling. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. In the paper, the results of the change in modal parameters due to crack appearance are presented. The influence of the crack parameters, especially of the changing location of the crack is examined.

Unsteady Pressure Distributions in a Channel Diffuser of Centrifugal Compressor (원심압축기 채널디퓨저 내부의 비정상 압력분포)

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.69-77
    • /
    • 1999
  • The aim of this paper is to understand the unsteady flow phenomena in a high speed centrifugal compressor channel diffuser. Instantaneous pressures are measured at six locations in the diffuser using fast-response pressure transducers. Instantaneous pressure ratio decomposition was applied to analyze the pressure signal. In vaneless space where impeller-vaned diffuser interaction is strong, aperiodic unsteadiness is high and periodic pressure waveforms by blade passing are not clear at low flow rates, especially near vane suction side. High aperiodic unsteadiness decreases downstream of diffuser. The blade-to-blade pressure wave does not disappear in surge flow condition. In surge there exist not only large scale periodic surge wave but also blade-to-blade pressure wave.

  • PDF

Physical Properties of the Windshied wiper Blade Rubber According to Vulcanization System (가황조건에 따른 Wiper Blade 고무의 특성변화)

  • Yun, Chang-Han;Gwon, Yeong-Bae
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.27-43
    • /
    • 1984
  • In order to obtain the high resilience, low compression set and less of hardness change in the wiper blade rubber, vulcanization system and receipes must be controlled. To improve the above the above Physical properties, the system should be taken as follows. i) peroxide vulcanization system and sulfur vulcanization system. ii) rubber having more cis-form than trans-form. iii) moderate particle size cabon black. v) usage of other improvement agent. The rubber blade with 4.4% compression set, 76% resilience, Hs 0 $\pm$ 2 hardness change could be abtained through vulcanization system, In addition, the surface of wiper blade must be treated by chemically and physically to minimize for the skid and friction.

  • PDF

A Fabrication Method of Blade Type Tip for Probe Unit Device (프르브유닛 소자용 블레이드형 팁 제조방법)

  • Lee, Keun-Woo;Lee, Jae-Hong;Kim, Chang-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1436-1440
    • /
    • 2007
  • Beryllium copper has been known to be an important material for the various fields of industry because it can be used for mechanical and electrical/electronic components that are subjected to elevated temperatures (up to $400^{\circ}C$ for short times). Blade type tip for probing the cells of liquid crystal display(LCD) was fabricated using beryllium copper foil. The dry film resist was employed as a mask for patterning of the blade type tip. The beryllium copper foil was etched using hydrochloric acidic iron-chloride solution. The concentration, temperature, and composition ratio of hydrochloric acidic iron-chloride solution affect the etching characteristics of beryllium copper foil. Nickel with the thickness of $3{\mu}m$ was electroplated on the patterned copper beryllium foil for enhancing its hardness, followed by electroplating gold for increasing its electrical conductivity. Finally, the dry film resist on the bridge was removed and half of the nickel was etched to complete the blade type tip.