• 제목/요약/키워드: Blade passing frequency

검색결과 74건 처리시간 0.022초

Research on non-uniform pressure pulsation of the diffuser in a nuclear reactor coolant pump

  • Zhou, Qiang;Li, Hongkun;Pei, Lin;Zhong, Zuowen
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.1020-1028
    • /
    • 2021
  • The nuclear reactor coolant pump transferring heat energy inherently brings with it the unsteady flow and inevitably threatens to the safe operation of the pump unit, especially with the pressure pulsation induced by the rotor-stator interaction. In this paper, the characteristics of pressure pulsation of the diffuser in a nuclear reactor coolant pump were investigated by the numerical simulation with experimental validation. Pressure pulsation signals measured synchronously from sensors mounted on the radial diffuser of a model pump were analyzed via Welch's method. Frequency components induced by the rotor-stator interaction can be revealed by the diameter mode analysis method. The pressure pulsation of the diffuser is dominated by the blade passing frequency and its harmonics, which are free from the effect of flow rate and rotational speed while the corresponding amplitudes are easily affected by different operational conditions and measuring positions. The non-uniformity is much more affected by the rotational speed than the flow rate. This research is helpful for further work to reduce the pressure pulsation for the reactor coolant pump.

캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석 (High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition)

  • 김대진;강병윤;최창호;배준환
    • 한국추진공학회지
    • /
    • 제22권4호
    • /
    • pp.61-67
    • /
    • 2018
  • 액체로켓엔진용 산화제펌프의 캐비테이션 시험 중 입출구 배관과 펌프 케이싱에서 계측된 고주파 신호를 분석하였다. 각각의 데이터의 RMS 값을 캐비테이션 수에 따라 표현하였다. 또한 회전수 동기 주파수와 날개 개수 성분, 캐비테이션 불안정성 주파수의 크기를 검토하였다. 입출구 배관의 압력섭동은 캐비테이션 불안정성의 영향을 받았다. 출구 배관의 신호에서는 인듀서 날개 주파수인 3x 성분이 탁월하였다. 이러한 현상은 임펠러의 날개 개수가 인듀서의 날개 개수의 배수인 것과 관계가 있는 것으로 추정된다. 케이싱에 부착된 가속도계에서도 캐비테이션 불안정성 주파수가 확인되었다.

4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구 (An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines)

  • 최대식;김석우;염태영;이승배
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

진공청소기 팬 모터의 진동 및 소음원인 분석을 위한 유동해석 (The Flow Analysis for Vibration and Noise Diagnostic of Vacuum Cleaner Fan Motor)

  • 김재열;곽이구;안재신;양동조;송경석;박기형
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.56-63
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

연료전지 자동차용 흡기 소음기의 설계 변수 최적화에 관한 연구 (Optimization of the multi-chamber perforated muffler for the air processing unit of the fuel cell electric vehicle)

  • 김의열;김민수;이상권;서상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.342-350
    • /
    • 2009
  • Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Since the electrochemical reaction in the fuel cell stack dose not generate any noise, Fuel cell systems are expected to operated much quieter than combustion engines. However, the tonal noise and the broad band noise caused by a centrifugal compressor and an electric motor cause which is required to feed the ambient air to the cathode of the fuel cell stack with high pressure. In this study, the multi-camber perforated muffler is used to reduce noise. We propose optimized muffler model using an axiomatic design method that optimizes the parameters of perforated muffler while keeping the volume of muffler minimized.

  • PDF

3차원 레이저 진동 측정기를 이용한 초고속 진공청소기 모터의 진동특성분석 (The Analysis of Vibration characteristics for Vacuum Cleaner Fan Motor Using 3-D Laser Vibrator)

  • 김재열;김우진;심재기;김영석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.399-405
    • /
    • 2004
  • Recently technology resulted in highly efficient and multiple-functional electric appliances considering environmental problems. One of the environmental problems is noise of a product in respect to its function. A vacuum cleaner is an essential electric appliance in our daily lives. However, severe noise resulted from high motor speed for improving the function of the appliance is a nuisance for the user. This noise is caused by vibration from various parts of the appliance and fluid noise during a series of intake and exhaust processes while rotating the impeller connected to the axle at a high speed of the fan motor inside the vacuum cleaner rotating around 30,000-35,000 rpm. Despite the fact that many researchers conducted studies on reducing the noise level of the fan motor in a vacuum cleaner, only few studies have been conducted considering both the theoretical and experimental aspects using fluid analysis by measuring vibration and noise. Moreover, there has not been a study that accurately compared major noise data obtained considering both of the aspects. In this study, both aspects were considered by considering the following experimental and theoretical methods to verify the major causes of noise from the fan motor in a vacuum cleaner.

  • PDF

복합화력발전소 가스터빈 압축기 블레이드에 대한 손상원인 고찰 (Fracture Mechanism of Gas Turbine Compressor Blades in a Combined Cycle Power Plant)

  • 양경현;송오섭;조철환;윤완노;정남근
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1025-1032
    • /
    • 2010
  • Gas turbine compressor blades used in a combined cycle power plant are possibly damaged and fractured during their operation. There are two possible causes of the failure of compressor blades; one is a defect of material quality which can be detected through some microscopic inspections for the fracture section, the other is high cycle fatigue problem caused by vibration and can be diagnosed by carrying out dynamic characteristics analysis for the blades. In this paper, in order to determine the cause of the failure of compressor blades in a combined cycle power plant, examination of the fracture section and the propagation mechanism of the crack via stress analysis are performed. Dynamic characteristics analysis via FRF estimation is also performed to identify the cause of failure.

청소기의 공력소음 특성 파악 및 저소음화에 관한 연구 (A Study on the Identification of Aeroacoustic Noise and Noise Reduction for a Vacuum Cleaner)

  • 전완호;백승조;김창준
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.460-466
    • /
    • 2003
  • The aeroacoustic characteristics and noise reduction method of a centrifugal fan for a bagless vacuum cleaner were studied. The major noise source of vacuum cleaner is the centrifugal fan. The impeller of the fan rotates over 30000 rpm and generates very high-level piercing noise. It was found that the dominant noise source of the fan is generated from the aerodynamic interaction between the highly rotating impeller and stationary diffuser. In order to reduce the high tonal sound generated from the aerodynamic interaction between the impeller and diffuser, tapered impeller was carefully designed and tested. The trailing edge of the tapered impeller was inclined and this reduces the flow interactions between the rotating impeller and the stationary diffuser because of some phase shift. The static efficiency of the new impeller is slightly lower than the conventional one. The overall SPL is reduced about 3.6 dBA. The SPL of blade passing frequency(BPF) is reduced about 6 dBA and the $2^{nd}$ BPF is reduced about 20 dBA. The vacuum cleaner with the tapered impeller has lower noise level than that of the previous impeller and the strong tonal sound was dramatically reduced.

회전익 항공기의 장비 장착 지지 구조물의 균열 방지를 위한 설계 개선 (Design Improvements for Preventing Crack of Equipment Mounting Structure in Rotary Wing Aircraft)

  • 방대한;이숙;이상훈;최상민
    • 항공우주시스템공학회지
    • /
    • 제14권1호
    • /
    • pp.28-35
    • /
    • 2020
  • 본 논문은 회전익 항공기의 동체에 특정 장비를 장착하기 위한 지지 구조물에서 균열이 발생하여 이를 개선하기 위한 목적으로 수행한 연구이다. 회전익 항공기 동체의 스킨(Skin) 구조물에 추가된 지지 구조물인 더블러(Doubler)는 개발 단계에서의 하중을 기반으로 설계 및 제작 되었으며, 항공기 운용 중 특정 시점에 더블러의 표면에서 균열이 발견되었다. 균열의 원인을 찾기 위해서 장비 장착 시 체결 조건으로 발생할 수 있는 원 구조물의 초기 변형을 고려하고, 항공기 날개 통과 주파수와 해당 구조물의 고유 주파수를 동특성 해석 조건으로 고려 하였다. 이러한 시나리오의 검토 결과로 초기 변형을 유발하는 패스너 체결 부위의 물리적인 틈(Gap) 제거를 위한 심(Shim)구조물을 추가하고, 두께가 보강된 더블러를 장착하였다. 개선된 설계의 구조적 검증을 위한 동특성 해석 결과를 검토하여 구조 강도의 증가를 확인하고, 더블러에 대한 피로 평가 수행을 통해 항공기 요구 수명 조건 또한 충족함을 확인하였다.

Aeroacoustic Characteristics and Noise Reduction of a Centrifugal Fan for a Vacuum Cleaner

  • Jeon, Wan-Ho;Rew, Ho-Seon;Kim, Chang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.185-192
    • /
    • 2004
  • The aeroacoustic characteristics of a centrifugal fan for a vacuum cleaner and its noise reduction method are studied in this paper. The major noise source of a vacuum cleaner is the centrifugal fan. The impeller of the fan rotates at over 30000 rpm, and generates very high-level noise. It was revealed that the dominant noise source is the aerodynamic interaction between the rotating impeller and stationary diffuser. The directivity of acoustic pressure showed that most of the noise propagates backward direction of the fan-motor assembly. In order to reduce the high tonal sound generated from the aerodynamic interaction, unevenly pitched impeller and diffuser, and tapered impeller designs were proposed and experiments were performed. Uneven pitch design of the impeller changes the sound quality while the overall sound power level (SPL) and the performance remains similar. The effect of the tapered design of impeller was evaluated. The trailing edge of the tapered fan is inclined. This reduces the flow interaction between the rotating impeller and the stationary diffuser because of some phase shifts. The static efficiency of the new impeller design is slightly lower than the previous design. However, the overall SPL is reduced by about 4 dB(A). The SPL of the fundamental blade passing frequency (BPF) is reduced by about 6 dB (A) and the 2$\^$nd/ BPF is reduced about 20 dB (A). The vacuum cleaner with the tapered impeller design produces lower noise level than the previous one, and the strong tonal sound was dramatically reduced.