• 제목/요약/키워드: Blade Shape

검색결과 481건 처리시간 0.026초

풍력터빈 블레이드상의 공력하중분포 해석 (Spanwise Aerodynamic Loads along the Wind Turbine Blade)

  • 이교열;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • The spanwise aerodynamic loads of the wind turbine blade are investigated numerically. The blade shape such as twist and chord length along the blade span is obtained from the procedure of aerodynamically optimal design. The rated tip speed ratio and the rated wind velocity are set to 7 and 12m/s respectively. The BEM method is applied to obtain both the aerodynamic performance of the wind turbine (Fig.1) and the spanwise aerodynamic loads along the blade span including Prandtl's tip loss factor. The maximum running power coefficient is occurred around 90% radial position from hub (Fig.2). The distributed aerodynamic loads along the blade span can be used for structure analysis.

  • PDF

소수력발전용 횡류수차의 러너 블레이드 깃수에 따른 성능해석 (Performance Analysis of a Cross Flow Hydro Turbine by Runner Blade Number)

  • 최영도;김창복;임재익;김유택;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.698-706
    • /
    • 2008
  • Performance improvement of Small hydro turbine is a very important subject to solve in the stage of introduction and development of the turbine. Cross-flow hydro turbine should be also studied more in detail for the turbine performance in order to extend the sites of application. In order to improve the turbine performance, the effect of the turbine shape on the turbine performance should be examined. Therefore, the effect of runner blade number on the turbine performance is investigated by use of a commercial CFD code. The results show that runner blade number gives remarkable effect on the efficiency and output power of the turbine. Pressure on the surface of the runner blade changes considerably by the blade number at Stage 1, but relatively small change of velocity distribution occurs in the flow passage.

Aeroelastic investigation of a composite wind turbine blade

  • Rafiee, Roham;Fakoor, Mahdi
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.671-680
    • /
    • 2013
  • Static aeroelastic is investigated in a wind turbine blade. Imposed to different loadings, the very long and flexible structures of blades experience some changes in its preliminary geometry. This results in variations of aerodynamic loadings. An iterative approach is developed to study the interactions between structure and aerodynamics evaluating variations in induced stresses in presence of aeroelasticity phenomenon for a specific wind turbine blade. A 3D finite element model of the blade is constructed. Aerodynamic loading is applied to the model and deflected shape is extracted. Then, aerodynamic loadings are updated in accordance with the new geometry of the deflected blade. This process is repeated till the convergence is met. Different operational conditions consisting of stand-by, start-up, power production and normal shut-down events are investigated. It is revealed that stress components vary significantly in the event of power production at the rated wind speed; while it is less pronounced for the events of normal shut-down and stand-by.

유동해석을 통한 소형 터보압축기 성능 개선 설계에 관한 연구 (A STUDY ON IMPROVED DESIGN OF SMALL SIZE TURBO-COMPRESSOR USING COMPUTATIONAL FLUID ANALYSIS)

  • 김승민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.142-146
    • /
    • 2010
  • This study presents the design of small size turbo-compressor to increase the performance using computational fluid analysis. A three dimensional computation was conducted changing the main parameters of impeller blade and diffuser shape, respectively, and the design was performed on a basis analysis of result of that. As a result, the Improved shapes show the increase of efficiency in comparison with the existing shape. This study will be used as useful reference data to establish the design concept of the small size turbo-compressor and to improve its performance.

  • PDF

상반전 조류발전 터빈의 형상설계 및 성능예측에 관한 연구 (A Study on the Performance Estimation and Shape Design of a Counter-Rotating Tidal Current Turbine)

  • 김문오;김유택;이영호
    • 해양환경안전학회지
    • /
    • 제20권5호
    • /
    • pp.586-592
    • /
    • 2014
  • 본 연구에서는 BEMT(Blade Element Momentum Theory)에 의해 우선 정격 출력 100 kW인 수평축 조류 발전용 단일 터빈에대한 기본 형상 설계를 진행하고, CFD 해석을 통해 블레이드 주변 유동특성 파악 및 출력 성능 예측을 하였다. 기본적인 에어포일은 FFA-W3-301, DU-93-W210, NACA-63418을 사용하였다. 이를 바탕으로 상반회전 터빈의 특성을 고찰한 결과, 설계 주속비 5.17에서 최대 출력계수는 0.495이며, 터빈의 출력은 101.82 kW를 얻었다.

최적화설계시스템을 이용한 터빈블레이드 냉각통로의 형상설계 (Shape Design of Passages for Turbine Blade Using Design Optimization System)

  • 정민중;이준성
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.1013-1021
    • /
    • 2005
  • In this paper, we developed an automatic design optimization system for parametric shape optimization of cooling passages inside axial turbine blades. A parallel three-dimensional thermoelasticity finite element analysis code from an open source system was used to perform automatic thermal and stress analysis of different blade configuration. The developed code was connected to an evolutionary optimizer and built in a design optimization system. Using the optimization system, 279 feasible and optimal solutions were searched. It is provided not only one best solution of the searched solutions, but also information of variation structure and correlation of the 279 solutions in function, variable, and real design spaces. To explore design information, it is proposed a new interpretation approach based on evolutionary clustering and principal component analysis. The interpretation approach might be applicable to the increasing demands in the general area of design optimization.

반응표면법을 이용한 축류 압축기의 동익형상 최적설계 (Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method)

  • 송유준;이정민;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

깃 끝단 개선을 통한 냉장고용 축류홴 저소음화에 대한 연구 (Study on Noise Reduction of an Axial Fan for Refrigerator through Modification of the Blade Tip)

  • 김창준;전완호;정용규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.639-644
    • /
    • 2002
  • In this paper, a successful noise reduction of an axial flow fan for a refrigerator is presented. The vortex sheet generated at the blade tip of fan was suppressed by changing the shape of the tip. The structure of vortex sheet and detailed flow pattern around the fan were studied by two-dimensional LDV(Laser-Doppler Velocimetry). Effective ways to work out the result as mentioned above are to make the tip of the blade varied in thickness and to have elliptical shapes. To seek the optimal value fur the shape of new fan, several cases were examined. Through the application of the methods, the refrigerator became less noisy by 3.8 dB(A) in terms of air-borne noise produced only by the axial flow fan compared to the current one.

  • PDF

대리모델을 사용한 축류송풍기 블레이드의 형상 최적화 (Shape Optimization of Axial Flow Fan Blade Using Surrogate Model)

  • 김진혁;최재호;김광응
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2440-2443
    • /
    • 2008
  • This paper presents a three dimensional shape optimization procedure for a low-speed axial flow fan blade with a weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations. Six variables from airfoil profile and lean are selected as design variables. 3D RANS solver is used to evaluate the objective functions of total pressure efficiency. Surrogate approximation models for optimization have been employed to find the optimal design of fan blade. A search algorithm is used to find the optimal design in the design space from the constructed surrogate models for the objective function. The total pressure efficiency is increased by 0.31% with the weighted average surrogate model.

  • PDF

Wells Turbine for Wave Energy Conversion -Effect of Trailing Edge Shape-

  • Takasaki, Katsuya;Tsunematsu, Tomohiro;Takao, Manabu;Alam, M M Ashraful;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.307-312
    • /
    • 2016
  • The present study reported of the use of special shaped blade to reduce the difference in pressure across the Wells turbine for wave energy conversion. The blade profile was composed of NACA0020 airfoils and trailing edge was notched like chevron. Experiments were performed investigating the influence of trailing edge shape on the turbine performance. Four notch depths were used to investigate the effect of depth of cut on the turbine performance. As results, by placing a notch-cut at the trailing edge of the blade, it was possible to reduce the pressure difference across the turbine without lowering the efficiency. In addition, the pressure difference substantially reduced at a constant rate with the increase of the cut ratio.