• Title/Summary/Keyword: Blade Pitch Control

Search Result 83, Processing Time 0.031 seconds

Speed Control of a Wind Turbine System Based on Pitch Control (피치제어형 풍력발전시스템의 속도제어)

  • Lim, Jong-Hwan;Huh, Jong-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF

A development of reliability evaluation model for power plant fan pitch blade control actuator (발전설비 통풍기 날개각 제어작동기 신뢰성평가 모델 개발)

  • Son, Tae-Ha;Huh, Jun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3259-3263
    • /
    • 2007
  • This paper describes the proceedings of creating countermeasures after analysis and maintenance be able to conduct operation safely in a power plant. in order to operate the power plant in a stable and reliable way, the best condition of the govemor system can be maintained through the response characteristic analysis of the control device for the pitch blade control hydraulic actuator. The fan pitch blade control hydraulic actuator of a 500MW large-scale boiler is frequently operated under normal operation conditions. Common problems or malfunctions of the pitch blade control hydraulic actuators leads to the decline of boiler thermal efficiency and unexpected power plant trip. The inlet and outlet gas can be controlled by using the fan pitch blade control hydraulic actuator in order to regulate the internal pressure of the furnace and control the frequency in the power plant facility which utilizes soft coals as a power source.

  • PDF

Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method (개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현)

  • Jeong, In-Oh;Lee, Yun-Han;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

A Study on the Wind Turbine Blade Optimization and Pitch Control Using the Hybrid Genetic Algorithm (혼합형 유전 알고리즘을 이용한 풍력발전기용 블레이드 최적설계 및 피치제어에 관한 연구)

  • Kang, Shin-Jae;Kim, Ki-Wan;Ryu, Ki-Wahn;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.7-13
    • /
    • 2002
  • This paper introduced a new hybrid genetic algorithm, verified its performance, and applied it to the optimization of blade design and pitch control for 30kW pitch-controlled variable-speed horizontal-axis wind turbine system to determine the optimum blade chord and twist distributions that maximize the energy production for a given Weibull wind distribution and the optimum blade pitch angles that maintain constant power output.

Investigation of a Speed Control for a Wind Turbin Systsem (풍력발전시스템 속도제어의 실험적 고찰)

  • 임종환;최민호;허종철;김건훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.36-36
    • /
    • 2000
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is non-linear function of a wind speed, angular velocity, and pitch angle of the blade. The design of a cor_troller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the angular velocity of the blade is constant. For speed control, however, the angular velocity is no longer a constant, so that linearization of the torque in terms of a wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of experiments.

  • PDF

Influence of failed blade-pitch-control system to FOWT by aero-elastic-control-floater-mooring coupled dynamic analysis

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-307
    • /
    • 2013
  • More FOWTs (floating offshore wind turbines) will be installed as relevant regulations and technological hurdles are removed in the coming years. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of FOWTs in time domain including aero-loading, tower elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. The developed coupled analysis program is applied to Hywind spar design with 5 MW turbine. In case of spar-type floaters, the control strategy significantly influences the hull and mooring dynamics. If one of the control systems fails, the entire dynamic responses of FOWT can be significantly different. Therefore, it is important to maintain various control systems in a good operational condition. In this regard, the effects of failed blade pitch control system on FOWT performance including structural and dynamic responses of blades, tower, and floater are systematically investigated. Through this study, it is seen that the failure of one of the blade pitch control system can induce significant dynamic loadings on the other blades and the entire FOWT system. The developed technology and numerical tool are readily applicable to any types of floating wind farms in any combinations of irregular waves, dynamic winds, and steady currents.

Development of pitch control system for 2WM wind turbine (2MW급 풍력발전용 블레이드 피치 제어 시스템 개발)

  • Choi, Hee-young;Ryu, Ji-su;Lee, Sang-ho
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.285-286
    • /
    • 2011
  • Wind turbine system is converting wind energy into electric energy. In nature, torque of the blade is nonlinear function. To get a high quality electric power, system needs control of blade angle. The control of a blade is divided into a stall regulation type and a pitch control type. Pitch control type is more expensive and complicated, but it can make torque of the blade in accordance with variable wind. This paper shows 2MW pitch control system's hardware and electric part.

  • PDF

Modelling of Power Plant Fan Pitch Blade Control Actuator (전력설비 대용량 보일러 통풍기 날개각 제어 작동기 모델링)

  • Huh, J.Y.;Son, T.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.28-33
    • /
    • 2007
  • In the power plant facility which use soft coal as a power source the fan pitch blade control hydraulic actuator is used to control the inlet and outlet gas to regulate the internal pressure of the furnace and control the frequence. Sometimes malfunctions of this equipment lead to the decline of boiler thermal efficiency and unexpected power plant trip. In order to localize the fan pitch blade control hydraulic actuator specially for the 500MW large scale boiler, Analysis and modelling of the system is carried out mathematically. The responses of the system are examined by using matlab simulation fur the variation of the major parameters in view of reverse engineering. Consequently the validity of the established parameters are examined.

  • PDF

Aerodynamic Characteristics of Several Airfoils for Design of Passive Pitch Control Module of 10 kW Class (10kW 급 풍력 블레이드의 수동형 피치제어 모듈의 설계를 위한 여러가지 익형의 공력 특성에 관한 연구)

  • Kang, Sang Kyun;Lee, Ji Hyun;Lee, Jang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.609-617
    • /
    • 2014
  • Even though the variable pitch control of a wind turbine blade is known as an effective component for power control over the rated wind speed, it has limited applicability to small wind turbines because of its relatively high cost on the price of small wind turbine. Instead, stall control is generally applied in the blade design without any additional cost. However, stall delay can frequently be caused by high turbulence around the turbine blade, and it can produce control failures through excessive rotational speed and overpowering the electrical generator. Therefore, a passive pitch control module should be considered, where the pitch moves with the aerodynamic forces of the blade and returns by the elastic restoring force. In this study, a method to calculate the pitch moment, torque, and thrust based on the lift and drag of the rotating blade wing was demonstrated, and several effective wing shapes were reviewed based on these forces. Their characteristics will be estimated with variable wind speed and be utilized as basic data for the design of the passive pitch control module.

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.