• Title/Summary/Keyword: Blade Low Ratio

Search Result 64, Processing Time 0.034 seconds

An Experimental Study on the Optimum Design of Sirocco Fan by Using Taguchi Method (다구찌 방법을 이용한 시로코 홴의 최적설계에 관한 실험적 연구)

  • Kim, Jang Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.761-768
    • /
    • 1999
  • This paper is studied to find the optimum condition of double-inlet Sirocco fan installed in an indoor PAC for low noise operation by the Taguchi method. The goal of this study is to obtain the best combination of each control factor which results in a desired flowrate of Sirocco fan with minimum variability. In this study, the parameter design of the Taguchi method is adopted for robust design by the dynamic characteristic analysis using orthogonal arrays and S/N ratios. The flowrate measurements are conducted by using a multiple-nozzle-type fan tester according to the orthogonal array L9($3^4$). The results of this study can be summarized as follows ; (i) The optimum condition of control factor is a set of where A is an inner to outer diameter ratio($D_1/D_2$), B is a width to outer diameter ratio($L/D_2$), C is a blade attachment angle(${\theta}$) and D is a number of blade(Z), (ii) The flowrate under the optimum condition satisfies the equation $y=0.0384{\cdot}M$ where M is a signal factor, namely number of revolution. The flowrate performance improves about 7.3% more largely as compared with the current condition, which results in about 35RPM reduction of number of revolution for the target flowrate $18.5m^3/min$, and (iii) The sensitivity analysis shows that the major factors in contribution to flowrate performance are A, B, and D ; the percentage contributions of each control factor are 44.01%(Z), 26.77%($D_1/D_2$) and 20.42%($L/D_2$).

Numerical Analysis of NACA64-418 Airfoil with Blunt Trailing Edge

  • Yoo, Hong-Seok;Lee, Jang-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.493-499
    • /
    • 2015
  • The aerodynamic performance of blunt trailing edge airfoils was investigated. The flow fields around the modified NACA64-418, which consists of the tip blade of the wind turbine and Mexico model of IEA wind, were analyzed. To imitate the repaired airfoil, the original NACA64-418 airfoil, a cambered airfoil, is modified by the adding thickness method, which is accomplished by adding the thickness symmetrically to both sides of the camber line. The thickness ratio of the blunt trailing edge of the modified airfoil, $t_{TE}/t_{max}$, is newly defined to analyze the effects of the blunt trailing edge. The shape functions describing the upper and lower surfaces of the modified NACA64-418 with blunt trailing edge are obtained from the curve fitting of the least square method. To verify the accuracy of the present numerical analysis, the results are first compared with the experimental data of NACA64-418 with high Reynolds number, $Re=6{\times}10^6$, measured in the Langley low-turbulence pressure tunnel. Then, the aerodynamic performance of the modified NACA64-418 is analyzed. The numerical results show that the drag increases, but the lift increases insignificantly, as the trailing edge of the airfoil is thickened. Re-circulation bubbles also develop and increase gradually in size as the thickness ratio of the trailing edge is increased. These re-circulations result in an increase in the drag of the airfoil. The pressure distributions around the modified NACA64-418 are similar, regardless of the thickness ratio of the blunt trailing edge.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Effect of Light Pretreatment on Photosynthetic Characteristics of Leaf Blade in Japonica and Tongil Type Rice (벼 자포니카와 통일형 품종간 광전역에 따른 엽신의 광합성특성 차이)

  • 허훈;류경열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.307-316
    • /
    • 1994
  • To investigate the effect of light pretreatment on photosynthetic characteristics of leaf blade of rice, 2 varieties of japonica type and 2 varieties of tongil type were grown under 30% or 70% shading conditions from tillering stage to heading stage. Shading treatment of 70% at the heading stage produced low dry matter, and higher LAR and SLA compared with other combination of shading treatment and growing stage did. Photosynthetic activity was lower in order of 0%, 30% and 70% shading treatment under the low light intensity(5Klux) but significantly high in 30% shading treatment under the high light intensity (33Klux) at tillering stage. Photosynthetic activity under low(5Klux) and high(33Kluk) light intensity were higher in order of 70%, 30% and 0% shading treatment at heading stage. Respiration /photosynthesis ratio was lower in shading treatment than in control. CGR, RGR and NAR decreased in shading treatment. Shading treatment reduced the number of ripened grain per panicle and decreased the harvesting index.

  • PDF

Comprehensive Aeromechanics Predictions on Air and Structural Loads of HART I Rotor

  • Na, Deokhwan;You, Younghyun;Jung, Sung N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.165-173
    • /
    • 2017
  • The aeromechanics predictions of HART I rotor obtained using a computational structural dynamics (CSD) code are evaluated against the wind tunnel test data. The flight regimes include low speed descending flight at an advance ratio of ${\mu}=0.151$ and cruise condition at ${\mu}=0.229$. A lifting-line based unsteady airfoil theory with C81 table look-up is used to calculate the aerodynamic loads acting on the blade. Either rolled-up free wake or multiple-trailer wake with consolidation (MTC) model is employed for the free vortex wake representation. The measured blade properties accomplished recently are used to analyze the rotor for the up-to-date computations. The comparison results on airloads and structural loads of the rotor show good agreements for descent flight and fair for cruise flight condition. It is observed that MTC model generally improves the correlation against the measured data. The structural loads predictions for all measurement locations of HART I rotor are investigated. The dominant harmonic response of the structural loads is clearly captured with MTC model.

Film Cooling by a Row of Jets in a Gas Turbine Blade (가스터빈블레이드에서 일렬의 제트에 의한 막냉각특성 연구)

  • 이용덕;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1851-1865
    • /
    • 1994
  • The objective of the present study is to predict the film cooling effectiveness by a row of holes at various injection ratios and injection angles. Numerical calculations have been performed to investigate the characteristics of flow and temperature distributions in a region near the down-stream of injection hole including the region of adverse pressure gradient. The elliptic turbulent 3-dimensional governing equations with variable thermal properties using the low-Reynolds number k-$\bar{varepsilon}$ model was solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient and secondary vortex in the region near the downstream of injection hole induces large temperature gradent. The $45^{\circ}$ injection has higher averaged film cooling effectiveness than $60^{\circ}$ injection. But neverthless the $90^{\circ}$ injection has greater deviation from a flat plate than $45^{\circ}$ and $60^{\circ}$ injection, the $90^{\circ}$ injection has higher averaged film cooling effectiveness than $45^{\circ}$ and $60^{\circ}$ injection in the region near the downstream of injection hole.

Numerical Study of the Supersonic Turbine Performance Variation with respect to the Rotor Profile Diameter (터빈 동익의 프로파일 정의 위치에 따른 초음속 터빈 성능변화에 대한 전산해석 연구)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.297-301
    • /
    • 2007
  • The blades of supersonic turbines with low aspect ratio are usually designed to have the same cross sectional shape in radial direction. The profile diameter definition of turbines may lead to produce unintended flow passage area variations resulting performance degradation. In this paper, the effects of profile diameter definition on the supersonic impulse turbine performance have been investigated. Computational results of three different profile diameters are compared. It has been found that flow passage area variation can be achieved according to designer's intention when blade profile is defined at rotor tip diameter. Furthermore, the turbine blade profile defined at rotor tip showed better performance than the others.

  • PDF

Wind Turbine Airfoils considering Surface Roughness Effects (표면거칠기 둔감도를 고려한 풍력발전기용 익형 개발)

  • Kim, Seok-Woo;Shin, Hyung-Ki;Jang, Moon-Seok
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.36-44
    • /
    • 2007
  • Most airfoils for wind turbines commercially available have been developed for aircrafts, which are operated at high Reynolds numbers. However, Reynolds numbers of wind turbines are very low compared to those of aircrafts. In other to improve wind turbine performances, airfoils for the use of wind turbine shall be designed such as S-series airfoils developed by NREL in America. The authors have designed new airfoils for wind turbines considering designated operation conditions of wind turbines and even local wind resources in Korea. The designed airfoils are characterized by improved roughness insensitivities compared to other airfoils such as S814 and S820. The developed KWA005-240 and KWA009-127 are for root and tip sections of a wind turbine blade, respectively. Although the results show much improved performances against NACA airfoils, performance data of post-stall regulation loses some accuracies due to the characteristics of the simulation tool of XFOIL. Therefore, wind tunnel experiments are required for more accurate evaluation of the designed airfoils. Currently, the experiments has been completed and the data analysis works are going on now. The final results obtained from the experiments will be published soon.

  • PDF

Flow Control on Wind Turbine Airfoil with a Vortex Cell (와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어)

  • Kang, Seung-Hee;Kim, Hye-Ung;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.405-412
    • /
    • 2012
  • A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

Comparative Study on the Film Cooling Effectiveness of 15° Angled Anti-Vortex Hole and 30-7-7 Fan-Shaped Hole Using PSP Technique (PSP를 이용한 15° 반와류 홀과 30-7-7 팬형상 홀의 막냉각 효율 비교 연구)

  • Kim, Ye Jee;Park, Soon Sang;Rhee, Dong Ho;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.13-18
    • /
    • 2016
  • The various film cooling hole shapes have been proposed for effective external cooling of gas turbine blade. In this study, the film cooling effectiveness by three different hole shapes (cylindrical hole, $15^{\circ}$ angle anti-vortex hole, 30-7-7 fan-shaped hole) were examined experimentally. Pressure Sensitive Paint (PSP) technique was used to measure the film cooling effectiveness. The coolant to mainstream density ratio was 1.0 and three blowing ratios of 0.5, 1.0, and 2.0 were considered. Results clearly showed that the effect of hole shape on the distribution of film cooling effectiveness. For the cylindrical hole case, the film cooling effectiveness decreased remarkably as the blowing ratio increased due to the jet lift off. Because of large hole exit area and low coolant momentum, the 30-7-7 fan-shaped hole case showed the highest film cooling effectiveness at all blowing ratio, followed by the anti-vortex hole case.