• Title/Summary/Keyword: Black body radiation

Search Result 22, Processing Time 0.014 seconds

Radiant Energy Filtering to Enhance High Temperature Measurement by a Thermography System (고온 계측 열화상 시스템 구현을 위한 복사에너지 필터링 연구)

  • Yoon, Seok Tae;Cho, Yong Jin;Jung, Ho Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.466-473
    • /
    • 2016
  • In a shipbuilding process, thermal damage to the ship structure at the rear end results from an excessive heat input and conduction during welding process. To prevent such damage, appropriate control of the heat input, based on welding temperature measurement, is required. For temperature measurement, contact and non-contact methods are available; the thermography system is a popular non-contact temperature measurement. When the intensity of radiation from a high-temperature object is excessive, however, detecting the sensors of ordinary thermography systems leads to an inability in measuring the temperature due to saturation. Hence, this study suggests use of a neutral density filter that prevents an excessive amount of radiation from being accumulated in a thermography system, and thus makes it possible to quantitatively measure an object's temperature as high as $3000^{\circ}C$.

IRAS OBSERVATIONS OF DARK GLOBULES

  • Lee, H.M.;Hong, S.S.;Kwon, S.M.
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.55-70
    • /
    • 1991
  • Infrared emission maps are constructed at 12.5, 25, 60, and $100{\mu}m$ for dark globules B5, B34, B133, B134, B361, L134 and L1523 by using Infrared Astronomical Satellite data base. These clouds are selected on the basis of their appearance in Palomar print as dark obscuring objects with angular sizes in the range of 3 to 30 arcminutes. The short wavelength(12.5 and $25{\mu}m$) maps show the embedded infrared sources. We found many such sources only in B5, B361 and B34 regions, Diffuse component at 12.5 and $25{\mu}m$, possibly arising from the stochastically heated very small dust grains(a < $0.01{\mu}m$) by interstellar radiation field, is found in B361 and L1523 regions. Such emission is characterized by the limb brightening, and it is confirmed in L1523 and in B361. Infrared emissions at the long wavelengths(60 and $100{\mu}m$) are due to colder dusts with temperature less than 20 K. The distribution of color index determined by the ratio 60 to $100{\mu}m$ intensities shows monotonic decrease of dust temperature toward the center. The black body temperature determined from these ratios is found to lie between 16 and 23 K. Such temperature is possible for small(i.e., $a\;{\lesssim}\;0.01{\mu}m$) graphite grains if the grains are mainly heated by interstellar radiation field. Thus IRAS 100 and $60{\mu}m$ emissions are arising mainly from small grains in the colud. The distribution of such dust grains implied from the emissivity distributions at 100 and $60{\mu}m$ resembles that of isothermal sphere. This contrasts to earlier findings of much steeper distribution of dusts contributing visible extinction. These dust grains are mainly larger ones(i.e., $a{\simeq}0.1{\mu}m$). Therefore we conclude that the average grain size increase, toward the cloud center.

  • PDF