• Title/Summary/Keyword: Black blood imaging

Search Result 5, Processing Time 0.018 seconds

Comparison of Contrast-Enhanced T2 FLAIR and 3D T1 Black-Blood Fast Spin-Echo for Detection of Leptomeningeal Metastases

  • Park, Yae Won;Ahn, Sung Jun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.86-93
    • /
    • 2018
  • Purpose: Imaging plays a significant role in diagnosing leptomeningeal metastases. However, the most appropriate sequence for the detection of leptomeningeal metastases has yet to be determined. This study compares the efficacies of contrast-enhanced T2 fluid attenuated inversion recovery (FLAIR) and contrast-enhanced 3D T1 black-blood fast spin echo (FSE) imaging for the detection of leptomeningeal metastases. Materials and Methods: Tube phantoms containing varying concentrations of gadobutrol solution were scanned using T2 FLAIR and 3D T1 black-blood FSE. Additionally, 30 patients with leptomeningeal metastases were retrospectively evaluated to compare conspicuous lesions and the extent of leptomeningeal metastases detected by T2 FLAIR and 3D T1 black-blood FSE. Results: The signal intensities of low-concentration gadobutrol solutions (< 0.5 mmol/L) on T2 FLAIR images were higher than in 3D T1 black-blood FSE. The T2 FLAIR sequences exhibited significantly greater visual conspicuity scores than the 3D T1 black-blood sequence in leptomeningeal metastases of the pial membrane of cistern (P = 0.014). T2 FLAIR images exhibited a greater or equal extent (96.7%) of leptomeningeal metastases than 3D T1 black-blood FSE images. Conclusion: Because of its high sensitivity even at low gadolinium concentrations, contrast-enhanced T2 FLAIR images delineated leptomeningeal metastases in a wider territory than 3D T1 black-blood FSE.

Effectiveness of a fast spin echo technique using the signal void in acquisition of black blood images (흑혈류영상 획득 시 신호소실을 활용한 고속스핀에코기법의 유용성)

  • Choi, Kwan-Woo;Kim, Yoon-Shin;Son, Soon-Yong;Lee, Hee-Ju;Min, Jung-Whan;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4313-4319
    • /
    • 2013
  • The purpose of our study is to shorten the scanning time and minimize the inconveniences of the patients in acquisition of the black blood images using the signal void effect in the fast spin echo technique while keeping the diagnostic value of the test. Thirty-two consecutive patients who underwent black blood MR imaging were examed with additional double inversion recovery (DIR) sequence and the conventional fast spin echo (FSE) sequence. Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of the internal carotid arteries' lumen were compared in T1 and T2 weighted images to determine whether there are differences between the two techniques for depiction of the signal void effect inside the vessel wall. The FSE images showed lower SNR values than the DIR images in both of the T1 and T2 weighted images (11.49% and 13.66% respectively). While the CNR values were higher in the FSE images than in the DIR images in both of the T1 and T2 weighted images (8.69% and 7.55% respectively).There was no significant difference between the two techniques for either of the SNR or CNR (p>0.05, p>0.05 respectively). The DIR and the FSE images demonstrated almost identical imaging patterns. Therefore, it is anticipated that the use of FSE technique in acquisition of the black blood imaging could reduce the inconveniences of the patients during the scanning and minimize exam time while keeping the diagnostic value of the test.

Benefit of Using Early Contrast-Enhanced 2D T2-Weighted Fluid-Attenuated Inversion Recovery Image to Detect Leptomeningeal Metastasis in Lung-Cancer Staging

  • Kim, Han Joon;Lee, Jungbin;Lee, A Leum;Lee, Jae-Wook;Kim, Chan-Kyu;Kim, Jung Youn;Park, Sung-Tae;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.32-42
    • /
    • 2022
  • Purpose: To evaluate the clinical benefit of 2D contrast-enhanced T2 fluid-attenuated inversion recovery (CE-T2 FLAIR) image for detecting leptomeningeal metastasis (LM) in the brain metastasis work-up for lung cancer. Materials and Methods: From June 2017 to July 2019, we collected all consecutive patients with lung cancer who underwent brain magnetic resonance image (MRI), including contrast-enhanced 3D fast spin echo T1 black-blood image (CE-T1WI) and CE-T2 FLAIR; we recruited clinico-radiologically suspected LM cases. Two independent readers analyzed the images for LM in three sessions: CE-T1WI, CE-T2 FLAIR, and their combination. Results: We recruited 526 patients with suspected lung cancer who underwent brain MRI; of these, we excluded 77 (insufficient image protocol, unclear pathology, different contrast media, poor image quality). Of the 449 patients, 34 were clinico-radiologically suspected to have LM; among them, 23 were diagnosed with true LM. The calculated detection performance of CE-T1WI, CE-T2 FLAIR, and combined analysis obtained from the 34 suspected LM were highest in the combined analysis (AUC: 0.80, 0.82, and 0.89, respectively). The inter-observer agreement was also the highest in the combined analysis (0.68, 0.72, and 0.86, respectively). In quantitative analyses, CNR of CE-T2 FLAIR was significantly higher than that of CE-T1WI (Wilcoxon signed rank test, P < 0.05). Conclusion: Adding CE-T2 FLAIR might provide better detection for LM in the brain-metastasis screening for lung cancer.

Black ginseng extract ameliorates hypercholesterolemia in rats

  • Saba, Evelyn;Jeon, Bo Ra;Jeong, Da-Hye;Lee, Kija;Goo, Youn-Kyoung;Kim, Seung-Hyung;Sung, Chang-Keun;Roh, Seong-Soo;Kim, Sung Dae;Kim, Hyun-Kyoung;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.160-168
    • /
    • 2016
  • Background: Ginseng (Panax ginseng Meyer) is a well-characterized medicinal herb listed in the classic oriental herbal dictionary as "Shin-nong-bon-cho-kyung." Ginseng has diverse pharmacologic and therapeutic properties. Black ginseng (BG, Ginseng Radix nigra) is produced by repeatedly steaming fresh ginseng nine times. Studies of BG have shown that prolonged heat treatment enhances the antioxidant activity with increased radical scavenging activity. Several recent studies have showed the effects of BG on increased lipid profiles in mice. In this study report the effects of water and ethanol extracts of BG on hypercholesterolemia in rats. To our knowledge, this is the first time such an effect has been reported. Methods: Experiments were conducted on male Sprague Dawley rats fed with a high-cholesterol diet supplemented with the water and ethanol extracts of BG (200 mg/kg). Their blood cholesterol levels, serum white blood cell levels, and cholesterol-metabolizing marker genes messenger RNA (mRNA) expression were determined. Liver and adipose tissues were histologically analyzed. Results: We found that BG extracts efficiently reduced the total serum cholesterol levels, low-density lipoprotein (LDL) levels with increased food efficiency ratio and increased number of neutrophil cells. It also attenuated the key genes responsible for lipogenesis, that is, acetyl-coenzyme A (CoA) acetyltransferase 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and sterol regulatory element-binding protein 2, at the mRNA level inside liver cells. Furthermore, the BG extract also reduced the accumulation of fat in adipose tissues, and inhibited the neutral fat content in liver cells stained with hematoxylin and eosin and oil red O. Conclusion: Administration of BG extracts to Sprague Dawley rats fed with high-cholesterol diet ameliorated hypercholesterolemia, which was mediated via modulation of cholesterol-metabolizing marker genes. This data throw a light on BG's cardioprotective effects.

Feasibility of Free-Breathing, Non-ECG-Gated, Black-Blood Cine Magnetic Resonance Images With Multitasking in Measuring Left Ventricular Function Indices

  • Pengfei Peng;Xun Yue;Lu Tang;Xi Wu;Qiao Deng;Tao Wu;Lei Cai;Qi Liu;Jian Xu;Xiaoqi Huang;Yucheng Chen;Kaiyue Diao;Jiayu Sun
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1221-1231
    • /
    • 2023
  • Objective: To clinically validate the feasibility and accuracy of cine images acquired through the multitasking method, with no electrocardiogram gating and free-breathing, in measuring left ventricular (LV) function indices by comparing them with those acquired through the balanced steady-state free precession (bSSFP) method, with multiple breath-holds and electrocardiogram gating. Materials and Methods: Forty-three healthy volunteers (female:male, 30:13; mean age, 23.1 ± 2.3 years) and 36 patients requiring an assessment of LV function for various clinical indications (female:male, 22:14; 57.8 ± 11.3 years) were enrolled in this prospective study. Each participant underwent cardiac magnetic resonance imaging (MRI) using the multiple breath-hold bSSFP method and free-breathing multitasking method. LV function parameters were measured for both MRI methods. Image quality was assessed through subjective image quality scores (1 to 5) and calculation of the contrast-to-noise ratio (CNR) between the myocardium and blood pool. Differences between the two MRI methods were analyzed using the Bland-Altman plot, paired t-test, or Wilcoxon signed-rank test, as appropriate. Results: LV ejection fraction (LVEF) was not significantly different between the two MRI methods (P = 0.222 in healthy volunteers and P = 0.343 in patients). LV end-diastolic mass was slightly overestimated with multitasking in both healthy volunteers (multitasking vs. bSSFP, 60.5 ± 10.7 g vs. 58.0 ± 10.4 g, respectively; P < 0.001) and patients (69.4 ± 18.1 g vs. 66.8 ± 18.0 g, respectively; P = 0.003). Acceptable and comparable image quality was achieved for both MRI methods (multitasking vs. bSSFP, 4.5 ± 0.7 vs. 4.6 ± 0.6, respectively; P = 0.203). The CNR between the myocardium and blood pool showed no significant differences between the two MRI methods (18.89 ± 6.65 vs. 18.19 ± 5.83, respectively; P = 0.480). Conclusion: Multitasking-derived cine images obtained without electrocardiogram gating and breath-holding achieved similar image quality and accurate quantification of LVEF in healthy volunteers and patients.