• Title/Summary/Keyword: Bit-allocate strategy

검색결과 2건 처리시간 0.643초

Adaptive Importance Channel Selection for Perceptual Image Compression

  • He, Yifan;Li, Feng;Bai, Huihui;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3823-3840
    • /
    • 2020
  • Recently, auto-encoder has emerged as the most popular method in convolutional neural network (CNN) based image compression and has achieved impressive performance. In the traditional auto-encoder based image compression model, the encoder simply sends the features of last layer to the decoder, which cannot allocate bits over different spatial regions in an efficient way. Besides, these methods do not fully exploit the contextual information under different receptive fields for better reconstruction performance. In this paper, to solve these issues, a novel auto-encoder model is designed for image compression, which can effectively transmit the hierarchical features of the encoder to the decoder. Specifically, we first propose an adaptive bit-allocation strategy, which can adaptively select an importance channel. Then, we conduct the multiply operation on the generated importance mask and the features of the last layer in our proposed encoder to achieve efficient bit allocation. Moreover, we present an additional novel perceptual loss function for more accurate image details. Extensive experiments demonstrated that the proposed model can achieve significant superiority compared with JPEG and JPEG2000 both in both subjective and objective quality. Besides, our model shows better performance than the state-of-the-art convolutional neural network (CNN)-based image compression methods in terms of PSNR.

R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder (HEVC 실시간 소프트웨어 인코더에서 GOP 병렬 부호화를 지원하는 R-lambda 모델 기반의 율 제어 방법)

  • Kim, Dae-Eun;Chang, Yongjun;Kim, Munchurl;Lim, Woong;Kim, Hui Yong;Seok, Jin Wook
    • Journal of Broadcast Engineering
    • /
    • 제22권2호
    • /
    • pp.193-206
    • /
    • 2017
  • In this paper, we propose a rate control method based on the $R-{\lambda}$ model that supports a parallel encoding structure in GOP levels or IDR period levels for 4K UHD input video in real-time. For this, a slice-level bit allocation method is proposed for parallel encoding instead of sequential encoding. When a rate control algorithm is applied in the GOP level or IDR period level parallelism, the information of how many bits are consumed cannot be shared among the frames belonging to a same frame level except the lowest frame level of the hierarchical B structure. Therefore, it is impossible to manage the bit budget with the existing bit allocation method. In order to solve this problem, we improve the bit allocation procedure of the conventional ones that allocate target bits sequentially according to the encoding order. That is, the proposed bit allocation strategy is to assign the target bits in GOPs first, then to distribute the assigned target bits from the lowest depth level to the highest depth level of the HEVC hierarchical B structure within each GOP. In addition, we proposed a processing method that is used to improve subjective image qualities by allocating the bits according to the coding complexities of the frames. Experimental results show that the proposed bit allocation method works well for frame-level parallel HEVC software encoders and it is confirmed that the performance of our rate controller can be improved with a more elaborate bit allocation strategy by using the preprocessing results.