• Title/Summary/Keyword: Bismuth shield

Search Result 36, Processing Time 0.023 seconds

Study on the Development of an Outdoor Radiographic Test Shield Using 3D Printer Filament Materials (3D 프린터 필라멘트 재료를 이용한 야외 방사선투과검사용 차폐체 개발을 위한 연구)

  • Mun, Ik-Gi;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.565-572
    • /
    • 2019
  • In this study, shielding analysis of material and thickness of 3D printer filaments was performed for the manufacture of custom shielding by radiation workers during outdoor radiographic test. The shielding was attached to the ICRU Slab Phantom after selecting the voxel source $^{192}Ir$ and $^{75}Se$ through simulation using MCNPX, and the distance between the source and the slab Phantom was set at 100 cm. The 12 shielding materials were divided into 5 mm units up to 200 mm from the absence of shielding materials to evaluate the energy absorbed per unit mass of each shielding material. The results showed that the shielding effect was high in the order of ABS + Tungsten, ABS + Bismuth, PLA + Copper, PLA + Iron from all sources of radiographic test. However, compared to lead, the shielding effect was somewhat lower. Based on this study in the future, further study of the atomic number and the high density filament material is necessary.

Development and Efficiency Evaluation of Auxiliary Shielding using Elbow Support (팔꿈치 지지대를 사용한 보조 차폐 기구의 개발 및 효용성 평가)

  • Hyun-Woo Im;Jae-Suk Kim;Dong-Gu Kang
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • As the importance of intervention has recently increased, interest in the health of medical staff performing the procedure is increasing. Existing radiation shielding devices have limited the operator's movement and have not been properly used due to the risk of infection, and adequate radiation shielding of the operator's gonads and furthermore, the entire area of the procedure room has not been achieved. An auxiliary shielding device was manufactured by attaching a Bismuth to the elbow support used in the procedure, and the radiation shielding effect was measured. As a result of the measurement, the average spatial dose rate decreased by about 64.8%, and the independent sample t-test analysis showed statistically significant below the significance probability (p<0.05). The use of an auxiliary shielding device is considered to be an effective shielding method that can shield the operator's gonads and reduce the radiation spatial dose rate of the entire area of the procedure room.

Development and Radiation Shield effects of Dose Reduction Fiber for Scatter ray in CT Exams (피폭선량저감 섬유의 개발과 CT 검사시 산란선 차폐 효과)

  • Kim, Sunghwan;Kim, Yong Jin;Kwak, Jong Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1871-1876
    • /
    • 2013
  • In this study, we developed and characterized the shielding properties of dose reduction fiber (DRF, Buffalo Co.) sheet during brain and chest CT examinations. The DRF sheet was composed of $1{\sim}500{\mu}m$ oxide Bismuth ($Bi_2O_3$) and 5 ~ 50 nm nano-barium sulfate ($BaSO_4$). Phantom and clinical studies were performed for characterization of the DRF shielding properties. In clinical study, we measured doses of eye, chest, abdomen and reproductive system of 60 patients in 3 hospitals during brain and chest CT examinations. We could determined the shielding effect of the DRF by comparing the doses when we used the DRF sheet or not. When we used the sheet during CT examination, the scattered dose were reduced about 20~50%. So, we suggest that the fiber should be used in radiological examinations for reducing patients doses.

Evaluation of a Curtain-Type Radiation Protection Device for Veterinary Interventional Procedures

  • Minsik Choi;Jaepung Han;Changgyu Lim;Jiwoon Park;Sojin Kim;Uhjin Kim;Jinhwa Chang;Dongwoo Chang;Namsoon Lee
    • Journal of Veterinary Clinics
    • /
    • v.41 no.3
    • /
    • pp.157-164
    • /
    • 2024
  • The standard radiation protection method in the angiography suite involves the use of a thyroid shield, a lead apron, and lead glasses. However, exposure to substantial amounts of ionizing radiation can cause cataracts, tumors, and skin erythema. A newly developed curtain-type radiation protection device consists of a curtain drape composed of a five-layer bismuth and lead acrylic head-shielding plate, with both bearing an equivalent 0.25 mm lead thickness. In this study, a quality assurance phantom was used as the patient to create radiation scatter from the radiographic source, and an anthropomorphic mannequin phantom was used as the interventionalist to measure the radiation dose at seven different anatomical locations. Thermoluminescent dosimeters were used to measure the radiation dose. The experimental groups consisted of all-sided or one-sided curtain set-ups, the presence or absence of a conventional shielding system, and the orientation of beam irradiation. Consequently, the curtain-type radiation protection device exhibited better radiation protection range and capabilities than conventional radiation protection systems, especially in safeguarding the forehead, eyes, arms, and feet, with minimal radiation exposure. Moreover, the mean shielding ratios of the conventional shielding system and curtain-type radiation protection device were measured at 51.94% and 93.86%, respectively. Additionally, no significant decrease in the radiation protection range or capability was observed, even with changes in the beam orientation or one-sided protection. Compared with a conventional shielding system, the curtain-type radiation protection device decreased radiation exposure doses and improved comfort. Therefore, it is a potential new radiation protection device for veterinary interventional procedures.

Reliability Verification of FLUKA Transport Code for Double Layered X-ray Protective Sheet Design (이중 구조의 X선 차폐시트 설계를 위한 FLUKA 수송코드의 신뢰성 검증)

  • Kang, Sang Sik;Heo, Seung Wook;Choi, Il Hong;Jun, Jae Hoon;Yang, Sung Woo;Kim, Kyo Tae;Heo, Ye Ji;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.547-553
    • /
    • 2017
  • In the current medical field, lead is widely used as a radiation shield. However, the lead weight is very heavy, so wearing protective clothing such as apron is difficult to wear for long periods of time and there is a problem with the danger of lethal toxicity in humans. Recently, many studies have been conducted to develop substitute materials of lead to resolve these problems. As a substitute materials for lead, barium(Ba) and iodine(I) have excellent shielding ability. But, It has characteristics emitting characteristic X-rays from the energy area near 30 keV. For patients or radiation workers, shielding materials is often made into contact with the human body. Therefore, the characteristic X-rays generated by the shielding material are directly exposured in the human body, which increases the risk of increasing radiation absorbed dose. In this study, we have developed the FLUKA transport code, one of the most suitable elements of radiation transport codes, to remove the characteristic X-rays generated by barium or iodine. We have verified the reliability of the shielding fraction of the structure of the structure shielding by comparing with the MCPDX simulations conducted as a prior study. Using the MCNPX and FLUKA, the double layer shielding structures with the various thickness combination consisting of barium sulphate ($BaSO_4$) and bismuth oxide($Bi_2O_3$) are designed. The accuracy of the type shown in IEC 61331-1 was geometrically identical to the simulation. In addition, the transmission spectrum and absorbed dose of the shielding material for the successive x-rays of 120 kVp spectra were compared with lead. In results, $0.3mm-BaSO_4/0.3mm-Bi_2O_3$ and $0.1mm-BaSO_4/0.5mm-Bi_2O_3$ structures have been absorbed in both 33 keV and 37 keV characteristic X-rays. In addition, for high-energy X-rays greater than 90 keV, the shielding efficiency was shown close to lead. Also, the transport code of the FLUKA's photon transport code was showed cut-off on low-energy X-rays(below 33keV) and is limited to computerized X-rays of the low-energy X-rays. But, In high-energy areas above 40 keV, the relative error with MCNPX was found to be highly reliable within 6 %.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.