• Title/Summary/Keyword: Bisector-Surface

Search Result 4, Processing Time 0.016 seconds

Search for extrasolar planets around K-giants: $\alpha$ Arietis - planet or surface features?

  • Lee, Byeong-Cheol;Mkrtichian, David E.;Han, In-Woo;Kim, Kang-Min;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2010
  • We report the detection of a low-amplitude 380.8-day radial velocity (RV) variations in oscillating K2 III star ${\alpha}$ Ari (HD 12929). We do not found the correlation between RV variations and equivalent widths of chromospheric activity indicators ($H{\alpha}$ and CaII 8662 ${\AA}line$). The bisector analysis shows that bisector velocity span (BVS) and RV variations are not strongly correlated with each other. These result suggest that the RV variations could have been produced either by planetary companion or by the surface spots. If this RV variation is indeed caused by a planetary companion, an orbital solution with a period of P = 381 days, a semi-amplitude of K = 41 m/s, and an eccentricity of e = 0.25 fits the data best. Assuming a possible stellar mass of $M_{\bigstar} = 1.4-5.6 M\odot$, we estimate the minimum mass for the companion of m sini = 1.8-4.5 $M_{Jup}$ with an orbital semi-major axis of 1.2-1.9 AU. If confirmed, our finding gives a support to search for exoplanets around giant stars with multi-periodic oscillations.

  • PDF

Secondary camera position optimization for observing the close space between objects (근접한 물체 사이의 공간 관찰을 위한 보조 카메라 위치 최적화)

  • Lee, Ji Hye;Han, Yun Ha;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.33-41
    • /
    • 2018
  • We present a secondary camera optimization method that helps the user exploring 3D virtual environment to precisely observe possible collisions between objects. The first role of our secondary camera is to automatically detect the area with the greatest possible collision. The second role is to show the detected area from a new angle of view that the current main camera cannot show. However, as the shapes of target objects are complex, the shape of the empty space between objects is also complex and narrow. It means that the space for the secondary camera position is highly constrained and its optimization can be very difficult. To avoid this difficulty and increase the efficiency of the optimization, we first compute a bisector surface between two target objects. Then, we limit the domain of the secondary camera's position on the bisector surface in the optimization process. To verify the utility of our method, we built a demonstration program in which the user can explore in a 3D virtual world and interact with objects by using a hand motion recognition device and conducted a user study.

Generation of 2-D Parametric Surfaces with Highly Irregular Boundaries

  • Sarkar, Subhajit;Dey, Partha Pratim
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • The conventional methods of boundary-conformed 2D surfaces generation usually yield some problems. This paper deals with two boundary-conformed 2D surface generation methods, one conventional approach, the linear Coons method, and a new method, boundary-conformed interpolation. In this new method, unidirectional 2D surface has been generated using some of the geometric properties of the given boundary curves. A method of simultaneous displacement of the interpolated curves from the opposite boundaries has been adopted. The geometric properties considered for displacements include weighted combination of angle bisector and linear displacement vectors at all the data-points of the two opposite generating curves. The algorithm has one adjustable parameter that controls the characteristics of transformation of one set of curves from its parents. This unidirectional process has been extended to bi-directional parameterization by superimposing two sets of unidirectional curves generated from both boundary pairs. Case studies show that this algorithm gives reasonably smooth transformation of the boundaries. This algorithm is more robust than the linear Coons method and capable of resolving the 2D boundary-conformed parameterization problems.

A planetary companion around K-giant ${\varepsilon}$ Corona Borealis

  • Lee, Byeong-Cheol;Han, In-Woo;Park, Myeong-Gu;Mkrtichian, David E.;Kim, Kang-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.77.1-77.1
    • /
    • 2012
  • We present high-resolution radial velocity measurements of K2 giant ${\varepsilon}$ CrB from February 2005 to January 2012 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph at Bohyunsan Optical Astronomy Observatory. We find that the RV measurements for ${\varepsilon}$ CrB exhibit a periodic variation of 418 days with a semi-amplitude of 129 m/s. There is no correlation with RV measurements and inhomogeneous surface features by examining chromospheric activity indicator (Ca II H region), the Hipparcos photometry, and bisector velocity span. Thus, Keplerian motion is the most likely explanation, which suggests that the RV variations arise from an orbital motion. Assuming a possible stellar mass of 1.7 $M_{\odot}$, for ${\varepsilon}$ CrB, we obtain a minimum mass for the planetary companion of 6.7 $M_{Jup}$ with an orbital semi-major axis of 1.3 AU, and an eccentricity of 0.11. We support that more massive stars harbor more massive planetary companions in giant hosting planetary companions (Dollinger et al. 2009), as well as, we discuss the frequency of detected planetary companions with the metallicity distribution in giant (Pasquini et al. 2007; Quirrenbach et al. 2011).

  • PDF