• 제목/요약/키워드: Bis(azide)

검색결과 12건 처리시간 0.017초

머루 과피와 종자 에탄올 추출물의 항산화 활성 및 항돌연변이 활성 분석 (Analysis of Antioxidative and Antimutagenic Activities of Ethanol Extracts from Pericarp and Seeds of Wild Grape (Vitis coignetiea))

  • 원지혜;김미라
    • 동아시아식생활학회지
    • /
    • 제26권2호
    • /
    • pp.192-199
    • /
    • 2016
  • The antioxidative activity and antimutagenic activity of the ethanol extracts from pericarp and seeds of wild grape (Vitis coignetiea) were analyzed in this study. The antioxidative activity of the extracts from wild grape was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The antimutagenic activity of the extracts was evaluated on Salmonella typhimurium TA98 and TA100 by Ames test using 4-nitroquinoline 1-oxide (4-NQO) and sodium azide as mutagens. In the antioxidative activity determination, $IC_{50}$ values of the DPPH radical scavenging activity of the extracts from pericarp and seeds were 27.16 ppm and 7.61 ppm, respectively. Additionally, ABTS radical scavenging activities of pericarp and seed extract were 99.75% and 98.87% at 200 ppm, respectively. In the antimutagenic activity determination, pericarp extract at 5 mg/plate inhibited 72.6% and 74.3% of mutagenicity of S. typhimurium TA98 induced by 4-NQO and sodium azaid, respectively. Also, the mutagenicity inhibition rates of seed extract at 5 mg/plate were 77.8% and 74.5% in S. typhimurium TA100 induced by 4-NQO and sodium azaid, respectively. These results demonstrate that the ethanol extract from wild grape has remarkable antioxidant activity and antimutagenicity.

Secretory Production of the Hericium erinaceus Laccase from Saccharomyces cerevisiae

  • Jin Kang;Thuat Van La;Mi-Jin Kim;Jung-Hoon Bae;Bong Hyun Sung;Seonghun Kim;Jung-Hoon Sohn
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.930-939
    • /
    • 2024
  • Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and ⳑ-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-β-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.