• Title/Summary/Keyword: Birefringence

Search Result 370, Processing Time 0.039 seconds

Numerical analysis for depolarization loss of laser beam induced by thermal birefringence considering thermal lensing at Nd:YAG rod (Nd:YAG 레이저 봉의 열렌즈 효과를 고려한 열복굴절에 의한 레이저 빔 편광 왜곡의 수치 계산)

  • 박종락;신윤섭;윤태현
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.237-242
    • /
    • 1999
  • Taking into consideration the thermal lensing effects of laser rods, depolarization losses of laser beams induced by the thermal birefringence were calculated. The numerical model proposed for the calculation, which is based on the paraxial ray optics formulation and provides explicit expressions of optical path lengths for various optical elements, was described in detail. Calculated results were compared with those of Jones matrix formulation and experiments. The calculated results are in good agreement with experimental results.

  • PDF

Phase Transition Characteristics of the BLN - PZT Ceramics. (BLN-PZT 세라믹의 상전이 특성)

  • 류기원;이영종;배선기;이영회
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.25-33
    • /
    • 1994
  • Temperature dependences of the remanent polarization $P_{\gamma}$/(T), effective birefringence ㅿn(T). dielectric constant K(T) and quadratic electro-optic coefficient R(T) of the two-stage sintered xBa(La$_{1/2}$Nb$_{1/2}$)O$_3$Pb$(Zr_{y}Ti_{1-y})O-{3}$(x=0.085, 0.09, 0.40$\leq$y$\leq$0.70)ceramics were investigated. Increasing the PbZrO$_3$ contents, the crystal structure of a specimen was varied from tetragonal and rhombohedral to cubic, and the phase transition was showed a diffuse phase transition(DPT) characteristics. Especially. in the compositions which located on the PE-FE phase boundary were showed a discrepancy between curie temperature and temperature range which a macroscopic polarization and a effective birefringence were disappeared.

  • PDF

High Optical Anisotropy Nematic Single Compounds and Mixtures

  • Gauza, Sebastian;Kula, Przemyslaw;Dabrowski, Roman;Sasnouski, Genadz;Lapanik, Valeri
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.2-5
    • /
    • 2012
  • We have designed, synthesized, and evaluated the physical properties of some high birefringence (${\Delta}n$) isothiocyanato biphenyl-bistolane liquid crystals. These compounds exhibit ${\Delta}n^-$ 0.4-0.7 at room temperature and wavelength $\lambda$=633 nm. Laterally substituted short alkyl chains and fluorine atom eliminate smectic phase and lower the melting temperature. The moderate melting temperature and very high clearing temperature make those compounds attractive for eutectic mixture formulation. Several mixtures based on those compounds were formulated and its physical properties evaluated.

Effect of Temperature on Photoinduced Reorientation of Azobenzee Chromophore in the Side Chain Copolymers

  • 최동훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1010-1016
    • /
    • 1999
  • We synthesized the photoresponsive side chain polymers containing aminonitro azobenzene for studying the effect of temperature on photoinduced birefringence. Four different copolymers were prepared using methacrylate, α-methylstyrene, and itaconate monomer. Photoisomerization was observed under the exposure of UV light using UV-VIS absorption spectroscopy. Reorientation of polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The change of the birefringence was observed with increasing the sample temperature under a continuous irradiation of excitation light. We could estimate the activation energy of molecular motion in thermal and photochemical mode. Besides the effect of glass transition temperature on the activation energy, we focused our interests on the effect of geometrical hindrance of polar azobenzene molecules and cooperative motion of environmental mesogenic molecules in the vicinity of polar azobenzene molecules.

Design of a Polarization Splitter Based on a Dual-core Hexagonal-shaped Photonic Crystal Fiber

  • Jegadeesan, Subramani;Dhamodaran, Muneeswaran;Azees, Maria;Murugan, Arunachalam
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.304-310
    • /
    • 2019
  • In this paper, a microstructured, hexagonal-shaped dual-core photonic crystal fiber (PCF) is proposed. The proposed structure has specific optical properties to obtain high birefringence and short coupling length, for different values of structural parameters varied over a wide range of wavelength. The properties are analyzed using a solid core of silica material. The proposed structure is implemented as a polarization splitter with splitting length of 1.9 mm and a splitting ratio of -34.988 dB, at a wavelength of 1550 nm. The obtained bandwidth in one band gap of about 81 nm. The numerical analysis ensures that the performance of the proposed polarization splitter is better than that of existing ones.

Effect of Molecular Aggregation on the Photo-Induced Anisotropy in Amorphous Polymethacrylate Bearing an Aminonitroazobenzene Moiety

  • Kim, Beom Jun;Park, Su Yeong;Choe, Dong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.271-275
    • /
    • 2001
  • We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment an d that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of a linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light.