• Title/Summary/Keyword: Bipolar Corona Charging

Search Result 3, Processing Time 0.014 seconds

Charge Distribution of Submicron Particles Charged by Spray Electrification or Corona Discharge (분무 및 코로나 방전에 의해 대전된 서브마이크론 입자의 대전량 분포)

  • Lee, Jae-Bok;Bae, Gwi-Nam;Hwang, Jeong-Ho;Lee, Gyu-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.124-132
    • /
    • 2001
  • This paper reports on the charge distribution measurements of submicron particles for three different charging mechanisms, which are spray electrification, bipolar ionization and corona discharge process, respectively. The number of elementary charges per particle was investigated by classifying and counting of a discrete mobility class. Charge distribution measurements were performed with NaCl particles generated from a collision atomizer for 0.01, 0.1, 1% NaCl solutions. Experimental results show than charge level of atomized NaCl particles is high and decreases with increasing the dissolved ion concentration. The charge level of the atomized NaCl particles can be reduced to that o Boltzmann equilibrium conditions by the bipolar ionization(Po(sup)210 bipolar ionizer). The charge level on NaCl particles passing through the corona discharge reactor is much higher than those of atomized or bipolar ionized NaCl particles. The evaluation of these measurements results in charge distribution of the submicron particles.

Particle Agglomeration of a Bipolar Charging System with a Control Grid (제어전극을 갖는 쌍극성 하전장치의 입자응집 특성)

  • Moon, Jae-Duk;Ahn, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.465-470
    • /
    • 2005
  • In this paper. an experimental study, for method of increasing the efficiency of electrostatic precipitator for the collection of submicron-sized particles has been studied. All AC electric field was used to induce agglomeration of bipolory charged Particles. .4 bipolar AC-agglomeration system. consisted with a multineedle-mesh discharge system with a control grid, was proposed and investigated. Systematic experiments were carried out to investigate the agglomeration ratio of the AC-agglomeration system as a function of the different grid spacings and grid resistances for the submicron particles generated from liquid prorhane gas burning. The agglomeration ratios, which indicate the particle numbers before and after agglomeration of the test particles in number concentration base, were found to be 0.87, 1.80, 3.86, 9.50 and, 11.00 times for the particle sizes of 0.3. 0.5, 0.7, 1.0, and 2.0$\mu$m at applied voltage of 3.5kV, respectively which showed that the fine particle numbers were decreased while the larger particle numbers were increase greatly.

Effect of Performance of Aerosol Charge Neutralizers on the Measurement of Highly Charged Particles Using a SMPS (에어로졸 중화기의 성능이 고하전 입자의 크기분포 측정에 미치는 영향)

  • Ji, Jun-Ho;Bae, Swi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1498-1507
    • /
    • 2003
  • A SMPS(scanning mobility particle sizer) system measures the number size distribution of particles using electrical mobility detection technique. An aerosol charge neutralizer, which is a component of the SMPS, is a bipolar charger using a radioactive source to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. In this study, the effect of the particle charging characteristics of two aerosol charge neutralizers on the measurement using a SMPS system was experimentally investigated for highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0.5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.3 to 3.0 L/min. The results show that the non-equilibrium character in particle charge distribution appears as the air flow rate increases although the particle number concentration is relatively low in the range of 1.5∼2x10$^{6}$ particles/㎤. The low neutralizing efficiency of the $^{85}$ Kr aerosol charge neutralizer for highly charged particles can cause to bring an artifact in the measurement using a SMPS system. However, the performance of the $^{210}$ Po aerosol charge neutralizer is insensitive to the air flow rate.