• Title/Summary/Keyword: Biphenylene

Search Result 14, Processing Time 0.023 seconds

Melt Copolymerization Reactions between 1,3-Bis(diethylamino)tetramethyldisiloxane and Aryldiol Derivatives

  • Jung, In-Kyung;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1303-1309
    • /
    • 2011
  • Melt copolymerization reactions of bis(diethylamino)tetramethyldisiloxane with several aryldiols were carried out to afford poly(carbotetramethyldisiloxane)s containing fluorescent aromatic chromophore groups in the polymer main chain: poly{oxy(4,4'-biphenylene)oxytetramethyldisiloxane}, poly{oxy(1,4-phenylene)oxytetramethyldisiloxane}, poly[oxy{(4,4'-isopropylidene)diphenylene}oxytetramethyldisiloxane], poly[oxy{(4,4'-hexafluoroisopropylidene)diphenylene}oxytetramethyldisiloxane], poly{oxy(2,6-naphthalene)oxytetramethyldisiloxane}, poly[oxy{4,4'-(9-fluorenylidene)diphenylene}oxytetramethyldisiloxane], poly{oxy(fluorene-9,9-dimethylene)oxytetramethyldisiloxane}, and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxytetramethyldisiloxane]. These materials are soluble in common organic solvents such as $CHCl_3$ and THF. The FTIR spectra of all the polymers exhibit the characteristic Si-O-C stretching frequencies at 1021-1082 $cm^{-1}$. In the THF solution, the polymeric materials show strong maximum absorption peaks at 215-311 nm, with strong maximum excitation peaks at 250-310 nm, and strong maximum fluorescence emission bands at 310-360 nm. TGA thermograms indicate that most of the polymers are stable up to $200^{\circ}C$ with a weight loss of less than 10% in nitrogen.

Effects of Biphenylene Structure on the Properties of Liquid Crystalline Polymer (비페닐렌구조가 액정중합체의 성질에 미치는 영향)

  • Yug, Gyeong-Chang;Shin, Dae-Yewn;Shin, Hong-Chul;Kim, Wan-Young
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.280-287
    • /
    • 1992
  • Aromatic liquid crystalline polyesters were synthesized from terephthalic acid(TPA), biphenyl dicarboxylic acid(BPA) and hydroquinone(HQ) by solution polymerization. Effects of TPA/BPA ratio(by mole %) on the thermal properties, thermal stability and textures of mesophases were investigated with DSC, TGA, cross-polarized microscopy and X-ray diffractometer. The synthesized polymers in this study were thermotropic and showed nematic textures. Melting temperature($T_m$) and isotropization temperature($T_i$) of polymer increased and thermal stabilities of polymer were improved with the content of BPA. Most of the polymers in this study had crystallinity more than 30%.

  • PDF

Preparation and Characterization of Partially Fluorinated Poly (arylene ether sulfone)/PTFE Composite Membranes for Fuel Cell (연료전지용 부분불소계 Poly (arylene e ther sulfone)/PTFE 복합막의 제조 및 특성 분석)

  • Kim, Eun Hee;Chang, Bong-Jun;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.191-200
    • /
    • 2012
  • New composite membranes were manufactured by impregnating post-sulfonated poly(arylene ether sulfone)s containing perfluorocyclobutane (PFCB) groups into porous polytetrafluoroethylene (PTFE) films. Two kinds of post-sulfonated poly(arylene ether sulfone)s with two different monomer ratios (sulfonable biphenylene monomer : non-sulfonable sulfonyl monomer = 6 : 4, 4 : 6) were first prepared through three synthetic steps: synthesis of trifluorovinylether-terminated monomers, thermal cycloaddition polymerization and post-sulfonation using chlorosulfonic acid (CSA). The composite membranes were then prepared by adjusting the concentrations (5~20 wt%) of the resulting copolymers impregnated in the PTFE films. The water uptake, ion exchange capacity (IEC) and ion conductivity of the composite membranes were characterized and compared with their unreinforced dense membranes and Nafion. All the synthesized compounds, monomers and polymers were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR and the composite membranes were observed with scanning electron micrographs (SEM).

Sequence Dependent Binding Modes of the ΔΔ- and ΛΛ-binuclear Ru(II) Complexes to poly[d(G-C)2] and poly[d(A-T)2]

  • Chitrapriya, Nataraj;Kim, Raeyeong;Jang, Yoon Jung;Cho, Dae Won;Han, Sung Wook;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2117-2124
    • /
    • 2013
  • The binding properties and sequence selectivities of ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ (bip = 4,4'-biphenylene (imidazo [4,4-f][1,10]phenanthroline) complexes with $poly[d(A-T)_2]$ and $poly[d(G-C)_2]$ were investigated using conventional spectroscopic methods. When bound to $poly[d(A-T)_2]$, a large positive circular dichroism (CD) spectrum was induced in absorption region of the bridging moiety for both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes, which suggested that the bridging moiety sits in the minor groove of the polynucleotide. As luminescence intensity increased, decay times became longer and complexes were well-protected from the negatively charged iodide quencher compared to that in the absence of $poly[d(A-T)_2]$. These luminescence measurements indicated that Ru(II) enantiomers were in a less polar environment compared to that in water and supported by minor groove binding. An angle of $45^{\circ}$ between the molecular plane of the bridging moiety of the ${\Delta}{\Delta}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex and the local DNA helix axis calculated from reduced linear dichroism ($LD^r$) spectrum further supported the minor groove binding mode. In the case of ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex, this angle was $55^{\circ}$, suggesting a tilt of DNA stem near the binding site and bridging moiety sit in the minor groove of the $poly[d(A-T)_2]$. In contrast, neither ${\Delta}{\Delta}$-nor ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex produced significant CD or $LD^r$ signal in the absorption region of the bridging moiety. Luminescence measurements revealed that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes were partially accessible to the $I^-$ quencher. Furthermore, decay times became shorter when bis-Ru(II) complexes bound to $poly[d(G-C)_2]$. These observations suggest that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes bind at the surface of $poly[d(G-C)_2]$, probably electrostatically to phosphate group. The results indicate that ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ are able to discriminate between AT and GC base pairs.