• 제목/요약/키워드: Biped Walking

검색결과 225건 처리시간 0.028초

웨이블릿 신경망을 이용한 한발지지상태에서의 5 링크 이족 로봇의 하이브리드 슬라이딩 모드 제어 (Hybrid Sliding Mode Control of 5-link Biped Robot in Single Support Phase Using a Wavelet Neural Network)

  • 김철하;유성진;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제12권11호
    • /
    • pp.1081-1087
    • /
    • 2006
  • Generally, biped walking is difficult to control because a biped robot is a nonlinear system with various uncertainties. In this paper, we propose a hybrid sliding-mode control method using a WNN uncertainty observer for stable walking of the 5-link biped robot with model uncertainties and the external disturbance. In our control system, the sliding mode control is used as main controller for the stable walking and a wavelet neural network(WNN) is used as an uncertainty observe. to estimate uncertainties of a biped robot model, and the error compensator is designed to compensate the reconstruction error of the WNN. The weights of WNN are trained by adaptation laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified through computer simulations.

이족 휴머노이드 로봇의 안정적인 보행패턴 분석: 퍼지 모델링 접근방법 (Analysis of Stable Walking Pattern of Biped Humanoid Robot: Fuzzy Modeling Approach)

  • 김동원;박귀태
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권6호
    • /
    • pp.376-382
    • /
    • 2005
  • In this paper, practical biped humanoid robot is presented, designed, and modeled by fuzzy system. The humanoid robot is a popular research area in robotics because of the high adaptability of a walking robot in an unstructured environment. But owing to the lots of circumstances which have to be taken into account it is difficult to generate stable and natural walking motion in various environments. As a significant criterion for the stability of the walk, ZMP (zero moment point) has been used. If the ZMP during walking can be measured, it is possible for a biped humanoid robot to realize stable walking by a control method that makes use of the measured ZMP. In this study, measuring the ZMP trajectories in real time situations throughout the whole walking phase on the flat floor and slope are conducted. And the obtained ZMP data are modeled by fuzzy system to explain empirical laws of the humanoid robot. By the simulation results, the fuzzy system can be effectively used to model practical humanoid robot and the acquired trajectories will be applied to the humanoid robot for the human-like walking motions.

Optimal Trajectory Modeling of Humanoid Robot for Argentina Tango Walking

  • Ahn, Doo-Sung
    • 동력기계공학회지
    • /
    • 제21권5호
    • /
    • pp.41-47
    • /
    • 2017
  • To implement Argentina tango dancer-like walking of the humanoid robot, a new trajectory generation scheme based on particle swarm optimization of the blending polynomial is presented. Firstly, the characteristics of Argentina tango walking are derived from observation of tango dance. Secondly, these are reflected in walking pose conditions and cost functions of particle swarm optimization to determine the coefficients of blending polynomial. For the stability of biped walking, zero moment point and reference trajectory of swing foot are also included in cost function. Thirdly, after tango walking cycle is divided into 3 stages with 2 postures, optimal trajectories of ankles, knees and hip of lower body, which include 6 sagittal and 4 coronal angles, are derived in consequence of optimization. Finally, the feasibility of the proposed scheme is validated by simulating biped walking of humanoid robot with derived trajectories under the 3D Simscape environment.

이족보형로봇의 전체 보행구간에서의 균형점 궤적 생성에 관한 연구 (A study on the ZMP Trajectory generation in multi step walking of IWR-III Biped Walking Robot)

  • 구자혁;최영하;최상호;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.546-548
    • /
    • 1998
  • This paper deals with ZMP trajectory generation in multi step walking of IWR-III(Inha Walking Robot) Biped Walking Robot. Biped walking is realized by combining 6-types of pre-defined steps and the actual ZMP can be used as a stability index of a robot. For the good tracking of actual ZMP, desired ZMP trajectory is generated during the whole walking time not for each step. Trajectory generation is performed considering velocities and accelerations of given via points using 5-th order polynomial interpolation method. As a result, balancing joints have a more smooth and continuous motion and actual ZMP has a better tracking ability. Numerical simulator is done by MATLAB to guarantee the walking of a robot satisfying the ZMP stability.

  • PDF

이족보행로봇 IWR의 기구학적 모델링과 역동역학 해석 (Kinematic Modeling and Inverse Dynamic Analysis of the IWR Biped Walking Robot)

  • 김진석;박인규;김진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.561-565
    • /
    • 2000
  • This paper deals with dynamic walking and inverse dynamic analysis of the IWR biped walking robot. The system has nine bodies of the multibody dynamics. and all of the .joints of them are made up of the revolute joints at first. The problem of redundant constraint in double support phase is solved by changing the type of the joints considering kinematic relation. To make sure of its dynamic walking, the movement of balancing weight is determined by which satisfies not only the condition of ZMP by applying the principle of D'Alembert but also the contact condition of the ground. The modeling of IWR and dynamic walking are realized using DADS.

  • PDF

이족보행로봇의 횡보행 경로생성을 위한 시뮬레이터 연구 (Study on a Simulator for Generating Side Walking Path of the Biped Walking Robot)

  • 최형식;전창훈;강진일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1285-1295
    • /
    • 2008
  • A research on a simulator for a side walking path of a 16 degree-of-freedom (d.o.f) biped walking robot(BWR) which is composed of 4 d.o.f upper-part body and 12 d.o.f lower-part of the body is presented. For generation of stable side walking motion, the kinematics, dynamics and the zero moment of point(ZMP) of the BWR were analyzed analytically and included in the simulator. To operate the motion simulator for stable side walking of the BWR, a graphic user interface program was developed which needs inputs for the side distance between legs, base joint angle, walking type, and walking velocity. The simulator was developed to generate joint angle data of legs for side walking, and the data are transmitted to the BWR for stable side walking. In the simulator, a new path function for smooth walking motion was proposed and applied to the simulator and actual motion of a BWR. Also for actual side walking, an algorithm for estimating backlashes of the actuating joint motors was proposed and included in the simulator. To validate the performance of the proposed motion simulator, the simulator was operated and its side walking data of the simulator were generated for a period of side walking.

Stable Biped Walking by Trunk and Waist Motion

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.85.2-85
    • /
    • 2002
  • If a biped humanoid robot walks stably on even and uneven planes like a human being, it should have a control system capable of compensating for moments generated by motions of its lower-limbs, upper-limbs and head. In this paper, a compensatory motion control method is described for the stability of biped humanoid robots. This control method calculates the combined motion of the trunk and the waist that cancels the generated moments by using an iteration algorithm. During the biped walking, the combined motion is employed only for stability while the motion of the lower-limbs is used only for locomotion. This method is useful for not only a steady walking but also a transient walking. The e...

  • PDF

3차원 장애물에서의 이족보행로봇을 위한 이동경로계획 알고리즘의 설계 (A Design of Path Planning Algorithm for Biped Walking Robot in 3-D Obstacle Environment)

  • 민승기;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.576-580
    • /
    • 1997
  • This paper presents a path planning algorithm for biped walking robot in 3-D workspace. Since the biped walking robot can generate path on some 3-D obstacles that cannot generate path in case of mobile robot, we have to make a new path planning algorithms. A 3-D-to-2-D mapping algorithm is proposed and two kinds of path planning algorithms are also proposed. They make it easier to generate an efficient path for biped walking robot under given environment. Some simulation results are shown to prove the effectiveness of proposed algorithms.

  • PDF

이족 보행 로봇의 관절부위 유연특성 시뮬레이션에 관한 연구 (A Study on Computer Simulation of Joint Compliance for a Biped Robot)

  • 이기주;박중경;임시형;임홍재
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.907-911
    • /
    • 2007
  • Compliance of joints must be considered when we analyze dynamics of a multi-body system. If the virtual model for CAE(computer aided engineering) analysis does not consider compliance, the result of CAE analysis can be very different from the actual experimental result. Especially in a biped walking robot, the robot may lose walking stability due to the compliance in joints of a walking robot. This paper proposed a method applying a compliance of joints in the biped walking robot to a virtual model. Also, through the 3-D displacement measurement using a laser tracker, it was demonstrated that the virtual model considering the joint compliance could effectively simulate the nonlinear motion of the real model.

4관절 3링크 2족 로봇과 걸음새에 관한 연구 (Design of 4 joints 3 Link Biped Robot and Its Gaits)

  • 김성훈;오준호;이기훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.523-528
    • /
    • 2000
  • In this paper, the new type biped walking robot which is composed of the minimum number or links just for walking and its appropriate gaits are proposed. The proposed new gaits for this robot are four-crossing, crawling, standing and turning gait. In designing the biped robot we propose the Performance Index which means the needed torque per a moving distance and generate foot trajectories by $3^{rd}$ order spline Interpolation. Among those, numerically we find the optimal conditions which minimize the Performance Index. Dynamically stable walking of the biped robot is realized by satisfying the stability condition of ZMP(zero moment point), which is related to maintaining the ZMP within the region of the supporting foot during the s1n91e leg support phase. We determine the region of mass center from the stability condition of ZMP and plan references which track the mass conte. trajectory of constant velocity. Finally we implement the gaits statically tracking the planned trajectories using PD control method.

  • PDF