• 제목/요약/키워드: Biotin-avidin

Search Result 102, Processing Time 0.016 seconds

Immunohistoehemical Observation on the Antigens Inducing IgG and IgM Antibodies against Sparganum (IgG와 IgM 항체를 유도하는 sparganum의 항원에 관한 면역조직화학적 및 전기영동에 의한 연구)

  • 김창환;최완성
    • Parasites, Hosts and Diseases
    • /
    • v.29 no.4
    • /
    • pp.339-354
    • /
    • 1991
  • Localization and characterization of the antigenic components of sparganum which induced IgG and IsM antibodies in the host were studied by immunohistochemical techniques and SDS-PAGT and Western blotting. The antigen recognized by IgG antibody of rats or mice which were immunised by infection or injection of crude extracts of metacestodes of Spirometra erinacei, was located in the parenchyme of sparganum, especially at the cortex and around the calcareous corpuscles. The immunoreaction was demonstrated not only in the encysted fibrous wall of host but around the arterioles or venules in the connective tissue of host. The antigen recognized by IgM antibody of rats or mice was also observed in the parenchyme of sparganum and in the connective tissue of host. By 5∼20% gradient SDS-PAGE and EIBT, we detected antigenic components by IgG and 1gG antibodies of the rat or mouse immunized by infection or injection of crude extract of spargana. Twenty-three antigenic bands from crude extracts of spargana were recognized by IgG antibody and 15 components by IgM antibody of immunized rats. Out of the bands recognized by IgG and IgM antibodies, 15 were cross-reacted each other. Twenty components of eBlcretory-secretory proteins from spargana were recognized by IgG, and 5 components by IgM antibody of immunized rats. By IgG and IgM antibodies of immunized mice, 16 components of crude extracts were recognized by IgG antibody and 9 components by IgM antibody. Twenty components of excretory-secretory preparation were recognized by IgG antibody and 5 components by IgM antibody. Thirteen components of crude extracts were cross-reacted by IgG antibody of rats and mice.

  • PDF

Development of High Intensity Focused Ultrasound (HIFU) Mediated AuNP-liposomal Nanomedicine and Evaluation with PET Imaging

  • Ji Yoon Kim;Un Chul Shin;Ji Yong Park;Ran Ji Yoo;Soeku Bae;Tae Hyeon Choi;Kyuwan Kim;Young Chan Ann;Jin Sil Kim;Yu Jin Shin;Hokyu Lee;Yong Jin Lee;Kyo Chul Lee;Suhng Wook Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Liposomes as drug delivery system have proved useful carrier for various disease, including cancer. In addition, perfluorocarbon cored microbubbles are utilized in conjunction with high-intensity focused-ultrasound (HIFU) to enable simultaneous diagnosis and treatment. However, microbubbles generally exhibit lower drug loading efficiency, so the need for the development of a novel liposome-based drug delivery material that can efficiently load and deliver drugs to targeted areas via HIFU. This study aims to develop a liposome-based drug delivery material by introducing a substance that can burst liposomes using ultrasound energy and confirm the ability to target tumors using PET imaging. Liposomes (Lipo-DOX, Lipo-DOX-Au, Lipo-DOX-Au-RGD) were synthesized with gold nanoparticles using an avidin-biotin bond, and doxorubicin was mounted inside by pH gradient method. The size distribution was measured by DLS, and encapsulation efficiency of doxorubicin was analyzed by UV-vis spectrometer. The target specificity and cytotoxicity of liposomes were assessed in vitro by glioblastoma U87mg cells to HIFU treatment and analyzed using CCK-8 assay, and fluorescence microscopy at 6-hour intervals for up to 24 hours. For the in vivo study, U87mg model mouse were injected intravenously with 1.48 MBq of 64Cu-labeled Lipo-DOX-Au and Lipo-DOX-Au-RGD, and PET images were taken at 0, 2, 4, 8, and 24 hours. As a result, the size of liposomes was 108.3 ± 5.0 nm at Lipo-DOX-Au and 94.1 ± 12.2 nm at Lipo-DOX-Au-RGD, and it was observed that doxorubicin was mounted inside the liposome up to 52%. After 6 hours of HIFU treatment, the viability of U87mg cells treated with Lipo-DOX-Au decreased by around 20% compared to Lipo-DOX, and Lipo-DOX-Au-RGD had a higher uptake rate than Lipo-DOX. In vivo study using PET images, it was confirmed that 64Cu-Lipo-DOX-Au-RGD was taken up into the tumor immediately after injection and maintained for up to 4 hours. In this study, drugs released from liposomes-gold nanoparticles via ultrasound and RGD targeting were confirmed by non-invasive imaging. In cell-level experiments, HIFU treatment of gold nanoparticle-coupled liposomes significantly decreased tumor survival, while RGD-liposomes exhibited high tumor targeting and rapid release in vivo imaging. It is expected that the combination of these models with ultrasound is served as an effective drug delivery material with therapeutic outcomes.