• 제목/요약/키워드: Biosorption model

검색결과 59건 처리시간 0.021초

Synthesis and characterization of sugarcane bagasse/zinc aluminium and apple peel/zinc aluminium biocomposites: Application for removal of reactive and acid dyes

  • Safa, Yusra;Tariq, Saadia Rashid;Bhatti, Haq Nawaz;Sultan, Misbah;Bibi, Ismat;Nouren, Shazia
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.301-307
    • /
    • 2018
  • In this research work, synthesis of sugarcane bagasse/zinc aluminium biocomposite and apple peel/zinc aluminium biocomposite and their application for removal of Reactive Red-241 and Acid Orange-7, respectively, was studied using various parameters. At pH 2 the sorption was the highest for both dyes. The trend showed that the dye sorption declined by decreasing the biocomposite dose and enhanced by increasing the dye concentration and temperature. Equilibrium was achieved at 60 minutes for Reactive Red-241 onto sugarcane bagasse/zinc aluminium biocomposite and 90 minutes for Acid Orange-7 onto apple peel/zinc aluminium biocomposite.The research data was good fitted to pseudo-2nd-order kinetic model and Langmuir isotherm. FT-IR analysis was used to confirm the biosorption of the selected dyes at the surface of biosorbent through various binding sites. Surface morphology modification of both biocomposites before and after biosorption was inspected through SEM. Crystallinity of biocomposite was examined through XRD analysis. It was implied that sugarcane bagasse/ zinc aluminium biocomposite and apple peel/ zinc aluminium biocomposite are good adsorbents for dyes elimination from aqueous solutions.

모자반(Sargassum thunbergii)을 이용한 Pb 및 Cr 제거 (Biosorption of Pb and Cr by Using Sargassum thunbergii)

  • 조문철;안갑환;서근학
    • 한국수산과학회지
    • /
    • 제38권3호
    • /
    • pp.153-157
    • /
    • 2005
  • The biosorption of Pb and Cr by Sargassum thunbergii was investigated in a batch conditions. The Pb and Cr uptake capacity of Sargassum thunbergii was 232.5 mg Pb/g biomass and 91.6 mg Cr/g biomass, respectively. An adsorption equilibria was reached within about 0.5 hr for both the Pb and the Cr. The adsorption parameters for both the Pb and the Cr were determined according to the Langmuir and Freundlich model. With increasing pH values, more negative sites are becoming available for the adsorption of Pb and Cr. The selectivity of mixture solution showed an uptake order of Pb>Cu>Cr>Cd. Pb and Cr adsorbed by S. thunbergii could be recovered ken 0.1 M HCl, 0.1 M $HNO_3$ and 0.1M EDTA by a desorption process, and the efficiency of Pb desorption was above $95.8\%$, whereas the efficiency of the Cr desorption was below $50.7\%$.

Biosorptive capacity of Cd(II) and Pb(II) by lyophilized cells of Pleurotus eryngii

  • Joo, Jin-Ho;Hussein, Khalid A.;Hassan, Sedky H.A.
    • 한국토양비료학회지
    • /
    • 제44권4호
    • /
    • pp.615-624
    • /
    • 2011
  • last few decades. In this study, the lyophilized cells of Pleurotus eryngii (mushroom) were used as an inexpensive biosorbent for Cd(II) and Pb(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Pb(II) biosorption such as pH (2.0-7.0), initial metal concentration ($0.0-300mg\;L^{-1}$), temperature, fungal biomass and contact time (0-120 min) were studied. Optimum pH for removal of Cd(II) and Pb(II) was 6.0, and the contact time was 45 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by Infrared (IR) spectroscopic technique. IR analysis of mushroom biomass revealed the presence of amino, carboxyl, hydroxyl and methyl groups, which are responsible for biosorption of Cd(II) and Pb(II). The maximum adsorption capacities of P. eryngii for Pb(II) and Cd(II) calculated using Langmuir adsorption isotherm were 82.0 and $16.13mg\;g^{-1}$, respectively. The adsorption isotherms for two biosorbed heavy metals were fitted well with Freundlich isotherm as well as Langmuir model with correlation coefficient ($r^2$>0.99). Thus, this study indicated that the P. eryngii is an efficient biosorbent for the removal of Cd(II) and Pb(II) from aqueous solutions.

Evaluation of Aluminum and Copper Biosorption in Two-Metal System using Algal Biosorbent

  • Lee, Hak-Sung;Volesky, Bohumil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권2호
    • /
    • pp.149-158
    • /
    • 1998
  • Biomass of non-living brown seaweed Sargassun fluitans pretreated with NaOH is capable of taking up more than $10\%$ $(q_{max}$ : 3.85 mmol/g for Al and 1.48 mmol/g for Cu) of its dry weight in the Al and Cu at pH of 4.5. However, the maximum Al and Cu uptakes calculated from Langmuir isotherm were 1.58 mmol/g for Al and 1.35 mmol/g for Cu at pH 3.5. Equilibrium batch sorption study was performed using two-metal system containing Al and Cu. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal biosorption inhibition due to the influence of a second metal. NaOH-treated S. fluitans contained 2.19 mmol $(43\;wt.\%)$ carboxyl groups per gram of biomass. A modified form of Langmuir, which assumes binding of Cu as $Cu^{2+}$ and Al as $Al(OH)_2^+,$ was used to model the experimental data. This result agrees with the one of mono-valent sorption for Al in single-metal system. The modified Langmuir model gives the following affinity correlated coefficients: 0.196 for Cu and 6.820 for Ah at pH 4.5, and 2.904 for Cu and 3.131 for Al at pH 3.5. The interference of Al in Cu biosorptive uptake was assessed by `cutting' the three dimensional uptake isotherm surfaces at constant second-metal final concentrations. Equimolar final equilibrium concentrations of Cu and Al of 1 mM at pH 4.5 give Cu and hi uptakes reduced by $82.5\%\;and\;5.4\%,$ respectively. However, these values at pH 3.5 were $55\%\;(Cu)\;and\;31\%$ (Al).

  • PDF

비틀대모자반, Sargassum sagamianum을 이용한 Pb 및 Cr 생체흡착 및 회수 (Biosorption of Pb and Cr by using Sargassum sagamianum)

  • 서근학;안갑환;이학성;이회근;조진구;홍용기
    • 한국수산과학회지
    • /
    • 제32권4호
    • /
    • pp.399-403
    • /
    • 1999
  • 우리나라 인근 해역에서 가장 쉽게 채취할 수 있는 해조류 중의 하나인 S. sagamianum을 이용한 Pb 및 Cr의 생체흡착 실험을 수행하였다. Pb 및 Cr은 15분 안에 흡착 평형에 도달하였으며, 평형흡착량은 각각 224.5mg Pb/g biomass 및 77.5mg Cr/g bio-mass로서 Pb의 흡착량이 Cr보다 약 3배정도 높았다. 또한 pH가 감소할수록 Pb 및 Cr의 홉착량은 감소하였으나 Pb가 상대적으로 많은 영향을 받는 것으로 나타났다. Pb, Cr, Cu 및 Cd 혼합용액에서는 Pb>Cu>Cr>Cd 순으로 흡착하였으며, Pb 및 Cr 이온이동량 존재하는 용액에서의 흡착은 거의 1 : 1로 흡착이 이루어졌다. Pb 및 Cr흡착 후에 0.1 M HCl, 0.1 M $HNO_3$ 및 0.1 M EDTA으로 탈착 실험을 수행하니, Pb는 의 경우에는 $95\%$이상 탈착되었으나 Cr의 경우 S. sagamianum와의 결합력이 상대적으로 강하여 탈착율이 $51\%$이하로 낮았다.

  • PDF

Influence of Anoxic Selectors on Heavy Metal Removal by Activated Sludge

  • Niec, Jay H.;Cha, Daniel K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.431-435
    • /
    • 2000
  • The goal of this research is to compare the metal binding characteristics of an anoxic selector activated sludge system and a conventional activated sludge system. Metal biosorption by biomass harvested from experimental systems was determined by a series of batch experiments. Heavy metals studied in this research were zinc, cadmium, and nickel. The sorption isotherm showed that the selector sludge had significantly higher sorption capacity than did the control sludge. Metal biosorption behavior closely followed a Freundlich isotherm model for equilibrium concentrations. ECP contents of biomass estimated by alkali extraction technique showed that ECP levels in the selector sludge significantly higher than that in the sludge harvested from the conventional system, indicating that the higher metal sorption capacity of selector sludge may be due to the selection of the ECP-producing bacteria (i.e., Zoogloea sp.) by the selector system.

  • PDF

개다시마를 이용한 Pb 및 Cu 흡착 (Biosorption of Pb and Cu by Kjellmaniella crassifolia)

  • 안갑환;서근학;오창섭
    • 한국환경과학회지
    • /
    • 제7권5호
    • /
    • pp.653-658
    • /
    • 1998
  • Marine algaes are capable of binding a large quantity of heavy metals. We have investigated the uptake capacity of Pb and Cu by using 22 species of marine algae. collected from Korean coast. Among a variety of different marine algae types for biosorbent potential. Kjellmaniella crassifolia showed the highest uptake capacity of Pb. Metal uptake of Pb and Cu by Kjellmaniella crassifolia increase as the initial concentration rises, as long as binding sites are remained. The metal uptake parameters for Pb and Cu had been determined according to Langmuir and Freundlich model. By increasing pH, Pb uptake was increased and Cu uptake was constant. The maximum uptake capacity of Pb and Cu by Kjellmaniella crassifolia was 437 mg/g and 129 mg/g, respectively.

  • PDF

Characterization of Functional Groups of Protonated Sargassum polycystum Biomass Capable of Binding Protons and Metal Ions

  • Yun, Yeoung-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.29-34
    • /
    • 2004
  • Biosorption technology is recognized as an economically feasible alternative for the removal and/or recovery of metal ions from industrial wastewater sources. However, the structure of biosorbents is quite complex when compared with synthetic ion-exchange resins, which makes it difficult to quantify the ion-binding sites. Accordingly, this report describes a well-defined method to characterize the pK values and numbers of biomass functional groups from potentiometric titration data. When the proposed method was applied to Sargassum polycystum biomass as a model biosorbent, it was found that the biomass contained three types of functional groups. In addition, the carboxyl group (pK=$3.7{\pm}0.09$) was found to be the major binding sites ($2.57{\pm}0.06 mmol/g$) for positively-charged heavy-metal ions.

Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder

  • Varma V., Geetha;Misra, Anil Kumar
    • Membrane and Water Treatment
    • /
    • 제7권5호
    • /
    • pp.403-416
    • /
    • 2016
  • The possibility of using carica papaya leaf powder for removal of copper from wastewater as a low cost adsorbent was explored. Different parameters that affect the adsorption process like initial concentration of metal ion, time of contact, adsorbent quantity and pH were evaluated and the outcome of the study was tested using adsorption isotherm models. A maximum of 90%-94.1% copper removal was possible from wastewater having low concentration of the metal using papaya leaf powder under optimum conditions by conducting experimental studies. The biosorption of copper ion was influenced by pH and outcome of experimental results indicate the optimum pH as 7.0 for maximum copper removal. Copper distribution between the solid and liquid phases in batch studies was described by isotherms like Langmuir adsorption and Freundlich models. The adsorption process was better represented by the Freundlich isotherm model. The maximum adsorption capacity of copper was measured to be 24.51 mg/g through the Langmuir model. Pseudo-second order rate equation was better suited for the adsorption process. A dynamic mode study was also conducted to analyse the ability of papaya leaf powder to remove copper (II) ions from aqueous solution and the breakthrough curve was described by an S profile. Present study revealed that papaya leaf powder can be used for the removal of copper from the wastewater and low cost water treatment techniques can be developed using this adsorbent.

해조류, Sargassum sagamianum을 이용한 Pb 흡착 및 탈착 (Biosorption and Desorption of Pb by Using Sargassum sagamianum)

  • 서근학;안갑환;공인수
    • KSBB Journal
    • /
    • 제14권5호
    • /
    • pp.611-615
    • /
    • 1999
  • 우리나라 인근 해역에서 가장 쉽게 채취할 수 있는 해조류 중의 하나인 S. sagamianum을 이용한 Pb의 생체흡착 실험을 수행하였다. Pb는 1시간 내에 흡착 평형에 도달하였으며, Pb의 평형흡착량은 각각 224.5 mg Pb/g biomass 였다. Pb 흡착시에 경금속인 Ca 및 Mg가 500 mg/L 이하로 존재할 때 Ca는 약간 흡착되었으나 Mg는 전혀 흡착되지 않아 Pb만을 선택적으로 제거하는 것이 가능하였다. Pb 흡착 후에 0.1M HCl, 0.1M HNO$_3$,0.1M EDTA 및 0.1 M NaOH를 이용하여 탈착 실험을 수행하고 다시 재흡착을 시키는 과정을 6회 반복한 결과, 탈착율은 EDTA가 100%로 가장 높았으나, S. sagamianum의 재생성을 고려해 볼 때 HNO$_3$및 HCl가 효과적인 탈착 용액인 것으로 사료되었다. 특히 HNO$_3$를 이용하였을 때 Pb의 누적흡착량이 736.8 mg/g biomass로서 가장 높은 것을 알 수 있었다. 이러한 결과로 부터 S. sagamianum 은 매우 우수한 생체흡착제로 연속공정에 사용이 가능할 것으로 사료되었다.

  • PDF