• 제목/요약/키워드: Biosolid

검색결과 6건 처리시간 0.025초

중금속 오염 토양 복원 및 바이오메스 생산량 증대를 위한 biosolid 활용 (Utilization of Biosolid for Enhanced Heavy Metal Removal and Biomass Production in Contaminated Soils)

  • 김권래;;김정규
    • 한국토양비료학회지
    • /
    • 제43권5호
    • /
    • pp.558-564
    • /
    • 2010
  • Cleaning up the landfill soil by phytoremediation in association with biomass production and utilization of biosolid as a soil amendment will be an attractive green technology. In order to examine this integrated green technology, in the current study of pot trial, heavy metal removal rate and biomass production were determined following cultivation of three different plant species in the landfill soil incorporated with biosolid at two different levels (25 ton $ha^{-1}$ and 50 ton $ha^{-1}$). Among the three plant species including Indian mustard (Brassica juncea), giant sunflower (Helianthus giganteus. L), and giant cane (Arundo donax. L), sunflower appeared to produce the largest biomass yield (19.2 ton $ha^{-1}$) and the produced amounts were magnificently increased with biosolid treatment compared to the control (no biosoild treatment). The increased production associated with biosolid treatment was common for other plant species and this was attributed to the biosolid originated nutrients as well as the improved soil physical properties due to the organic matter from biosolid. The elevated heavy metals in soil which was originated from the incorporated biosolid were Cu and Zn. Based on the phytoavailable amount of heavy metals from biosolid, the removed amount by plant shoots were 95% and 165% for Cu and Zn, respectively, when sunflower was grown. This indicated that mitigation of heavy metal accumulation in soils achieved by the removal of metal through sunflower cultivation enables the successive treatment of biosolid to soils. Moreover, sunflower showed heavy metal stabilization ability in the rhizosphere resulting in alleviation of metal release to ground water.

시용된 유기물 종류별 토양중 질소무기화 (Nitrogen Mineralization in Soils Added with Different Organic Materials)

  • 이종식
    • 한국토양비료학회지
    • /
    • 제31권3호
    • /
    • pp.233-237
    • /
    • 1998
  • 토양에 시용되는 각종 폐유기물들의 토양중 질소 무기화율을 알아보기 위하여 3종의 폐유기물(A:도시고형폐기물+하수슬러지, B:목재잔사, C:목재잔사+하수슬러지)를 토양에 처리한 뒤 12주 동안 $25^{\circ}C$ 호기조건에서 질소 무기화율을 조사한 결과, 초기 질산화율은 C 처리구가 다른 처리구에 비하여 높았다. 또한 무기화된 총질소량은 C 처리구에서 가장 많았으나 실험기간 동안의 질소 무기화율과 질산화율은 무처리구에서 높게 나타났다.

  • PDF

Biosolid 처리가 옥수수 근권의 유기산 생성과 중금속 유효도에 미치는 영향 (Effect of Biosolids on Heavy Metal Bioavailability and Organic Acid Production in Rhizosphere of Zea mays L.)

  • 구본준;정덕영
    • 한국토양비료학회지
    • /
    • 제38권4호
    • /
    • pp.173-179
    • /
    • 2005
  • Biosolid 처리는 옥수수의 생장을 촉진시켰으며 중금속 흡수 또한 현저히 증가시켰다. 특히 다른 biosolid와 비교하여 Nu-earth 처리에서 옥수수 지상부의 Cd과 Zn의 흡수가 많은 것으로 나타났다. 옥수수의 중금속 흡수는 biosolid 자체의 중금속 함량과 밀접하게 관련되었는데, 크롬과 납의 흡수는 그 중 상관관계가 가장 낮았다. 근권의 유기산은 주로 lactic acid, acetic acid, propionic acid, butyric acid 및 oxalic acid 인 것으로 나타났다. 그 외 glutaric acid와 succinic acid, pyruvic acid 및 tartaric acid도 일부 발견되었다. Biosolid를 처리한 경우에는 butyric acid가 가장 많았으며 처리하지 않은 경우에는 acetic acid가 가장 많았다.

소나무 뿌리 폐기물을 이용한 목질 펠릿 제조 - 목부와 뿌리로 제조한 펠릿의 특성 비교 (Wood pelletizing using pine root waste biomass - different pelletizing properties between trunk and root biomass of Pinus densiflora)

  • 신수정;한규성;명수정;조중식;연익준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.71-73
    • /
    • 2008
  • Different biosolid fuel (wood pellet) properties between trunk and root of pine (Pinus densiflora) biomass were investigated. Trunk has more organic solvent extracts and Klason lignin content which has higher heating values than root biomass component. In root biomass, polysaccharides content was higher than trunk biomass. Based on Higher Heating Value (HHD) analysis and ash content, trunk biomass showed better solid fuel characteristics than root biomass. But pine root biomass had lower HHD than trunk biomass, its HHD values were higher than other hardwood or annual plant lignocellulosic biomass.

  • PDF

시료 중 잔류 항생제 분석 방법: I. 고상 시료 전처리 방법 (Determination of Antibiotic Residues: I. Extraction and Clean-up Methods for Solid Samples_A Review)

  • 김찬식;류홍덕;정유진;김용석;류덕희
    • 한국물환경학회지
    • /
    • 제32권6호
    • /
    • pp.600-627
    • /
    • 2016
  • Korea is one of the countries with a large veterinary antibiotics market, although antimicrobial resistance in bacteria is becoming a serious issue in many countries. The Korean government started to take interest in estimating the effects of livestock manure on rivers and agricultural soils and in monitoring of heavy metals, organic pollutants and antibiotics in the ambient water and soil. In this paper, pre-treatment methods to separate the selected antibiotics from solid samples were reviewed. It is essential to select an efficient and appropriate procedure for pre-treatment due to the high proportion of proteins and organics in biosolid samples. Pre-treatment consists of extraction followed by clean-up. Initially, homogenized samples were extracted by sonication, mechanical agitation or pressurized liquid extraction with methanol/acetonitrile/water mixture under acidic/basic conditions depending on the compound. However, aminoglycosides and colistin were extracted with 5% trichloroacetic acid and HCl, respectively. Since the ${\beta}-lactams$ are easily decomposed in acidic and basic conditions, they were extracted in neutral pH. Filtration with a membrane (pore size, $0.2{\mu}m$) or solid phase extraction with HLB and methanol, as eluents, was normally applied for the clean-up. At least, three different pre-treatment procedures should be adopted to screen all the selected antibiotics in solid samples.

하수슬러지 처리기술 동향 및 최적화 처리방안 (Treatment, Disposal and Beneficial Use Option for Sewage Sludge)

  • 최용수
    • 수도
    • /
    • 제24권5호통권86호
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF