• Title/Summary/Keyword: Biosolid

Search Result 6, Processing Time 0.023 seconds

Utilization of Biosolid for Enhanced Heavy Metal Removal and Biomass Production in Contaminated Soils (중금속 오염 토양 복원 및 바이오메스 생산량 증대를 위한 biosolid 활용)

  • Kim, Kwon-Rae;Naidu, Ravi;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.558-564
    • /
    • 2010
  • Cleaning up the landfill soil by phytoremediation in association with biomass production and utilization of biosolid as a soil amendment will be an attractive green technology. In order to examine this integrated green technology, in the current study of pot trial, heavy metal removal rate and biomass production were determined following cultivation of three different plant species in the landfill soil incorporated with biosolid at two different levels (25 ton $ha^{-1}$ and 50 ton $ha^{-1}$). Among the three plant species including Indian mustard (Brassica juncea), giant sunflower (Helianthus giganteus. L), and giant cane (Arundo donax. L), sunflower appeared to produce the largest biomass yield (19.2 ton $ha^{-1}$) and the produced amounts were magnificently increased with biosolid treatment compared to the control (no biosoild treatment). The increased production associated with biosolid treatment was common for other plant species and this was attributed to the biosolid originated nutrients as well as the improved soil physical properties due to the organic matter from biosolid. The elevated heavy metals in soil which was originated from the incorporated biosolid were Cu and Zn. Based on the phytoavailable amount of heavy metals from biosolid, the removed amount by plant shoots were 95% and 165% for Cu and Zn, respectively, when sunflower was grown. This indicated that mitigation of heavy metal accumulation in soils achieved by the removal of metal through sunflower cultivation enables the successive treatment of biosolid to soils. Moreover, sunflower showed heavy metal stabilization ability in the rhizosphere resulting in alleviation of metal release to ground water.

Nitrogen Mineralization in Soils Added with Different Organic Materials (시용된 유기물 종류별 토양중 질소무기화)

  • Lee, Jong-Sik;Graetz, Donald A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.233-237
    • /
    • 1998
  • Mineralization of organic N is an important factor in determining the appropriate rate for organic waste application to cropland. The mineralization of organic N was examined using sandy soil amended with three kind of compost (municipal solid waste+biosolid, yard trimmings, yard trimmings+biosolid), respectively. During the 12-week incubation, the mineralization of organic N was determined by analyzing the inorganic N in leachates from unamended and amended soils. Soils amended with com posts made of biosolid had higher initial $NH_4-N$ concentration than unamended soil. Soil amended with compost made of yard trimmings only had slightly lower initial inorganic N concentration than unamended soil. In the soil amended with com post made of yard trimmings+biosolid, however, nitrification rate was enhanced in the first week of incubation. Net N mineralization and nitrification were positive in all treatments. Although the greatest net N mineralization occurred in the soil amended with compost made of yard trimmings+biosolid, the greatest net mineralization and nitrification rates occurred in unamended soil.

  • PDF

Effect of Biosolids on Heavy Metal Bioavailability and Organic Acid Production in Rhizosphere of Zea mays L. (Biosolid 처리가 옥수수 근권의 유기산 생성과 중금속 유효도에 미치는 영향)

  • Koo, Bon-Jun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.173-179
    • /
    • 2005
  • A greenhouse experiment was conducted to evaluate the composition of organic acids on the bioavailability of heavy metals in the rhizosphere of corn (Zea mays L.) over 12 weeks after treatment of biosolids. After planting the plants were sampled at 12th week and analyzed for heavy metals in shoot and root and organic acids in the rhizosphere. Results showed that biomass yields of Zea mays L. grown on biosolids-treated media were significantly higher than those grown on standard media. The effect of biosolids on biomass yields of Zea mays L. was in order of Riverside ${\approx}$ Los Angeles ${\approx}$ MWRDGC > Milorganite > Nu-earth > standard media. Metal uptake by Zea mays L. was closely related with the contents contained on biosolids treated. In the plot treated with Nu-earth the uptake of Cd and Zn by shoot was significantly higher than those at the plots treated with other biosolids. The uptake patterns of Cd and Zn by root were similar to those of shoot. The uptake of Cr and Ni was significantly higher with application of Nu-earth over other biosolids. In all cases, the major organic acids in the rhizoshpere were lactic, acetic, propionic, butyric, and oxalic acids. Other organic acids were glutaric and succinic and occasionally, pyruvic and tartaric acids were also found. And the organic acid compositions did not vary significantly with the treatments of biosolids. Butyric and acetic acids were distinctively dominant both in the standard and the biosolids treatments.

Wood pelletizing using pine root waste biomass - different pelletizing properties between trunk and root biomass of Pinus densiflora (소나무 뿌리 폐기물을 이용한 목질 펠릿 제조 - 목부와 뿌리로 제조한 펠릿의 특성 비교)

  • Shin, Soo-Jeong;Han, Gyu-Seong;Myeong, Soo-Jeong;Cho, Jung-Sik;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.71-73
    • /
    • 2008
  • Different biosolid fuel (wood pellet) properties between trunk and root of pine (Pinus densiflora) biomass were investigated. Trunk has more organic solvent extracts and Klason lignin content which has higher heating values than root biomass component. In root biomass, polysaccharides content was higher than trunk biomass. Based on Higher Heating Value (HHD) analysis and ash content, trunk biomass showed better solid fuel characteristics than root biomass. But pine root biomass had lower HHD than trunk biomass, its HHD values were higher than other hardwood or annual plant lignocellulosic biomass.

  • PDF

Determination of Antibiotic Residues: I. Extraction and Clean-up Methods for Solid Samples_A Review (시료 중 잔류 항생제 분석 방법: I. 고상 시료 전처리 방법)

  • Kim, Chansik;Ryu, Hong-Duck;Chung, Eu Gene;Kim, Yongseok;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.600-627
    • /
    • 2016
  • Korea is one of the countries with a large veterinary antibiotics market, although antimicrobial resistance in bacteria is becoming a serious issue in many countries. The Korean government started to take interest in estimating the effects of livestock manure on rivers and agricultural soils and in monitoring of heavy metals, organic pollutants and antibiotics in the ambient water and soil. In this paper, pre-treatment methods to separate the selected antibiotics from solid samples were reviewed. It is essential to select an efficient and appropriate procedure for pre-treatment due to the high proportion of proteins and organics in biosolid samples. Pre-treatment consists of extraction followed by clean-up. Initially, homogenized samples were extracted by sonication, mechanical agitation or pressurized liquid extraction with methanol/acetonitrile/water mixture under acidic/basic conditions depending on the compound. However, aminoglycosides and colistin were extracted with 5% trichloroacetic acid and HCl, respectively. Since the ${\beta}-lactams$ are easily decomposed in acidic and basic conditions, they were extracted in neutral pH. Filtration with a membrane (pore size, $0.2{\mu}m$) or solid phase extraction with HLB and methanol, as eluents, was normally applied for the clean-up. At least, three different pre-treatment procedures should be adopted to screen all the selected antibiotics in solid samples.

Treatment, Disposal and Beneficial Use Option for Sewage Sludge (하수슬러지 처리기술 동향 및 최적화 처리방안)

  • Choe, Yong-Su
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF