• Title/Summary/Keyword: Biosensors

Search Result 296, Processing Time 0.045 seconds

Detection of Chlorotoluene and Nitrotoluene Compounds by Recombinant Microbial Biosensors (재조합 미생물 바이오센서를 이용한 chlorotoluene과 nitrotoluene 화합물의 검출)

  • Lee, Da Young;Cho, Jae Ho;Lim, Woon Ki;Shin, Hae Ja
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • Aromatic hydrocarbons are toxic environmental pollutants that are detrimental to the ecosystem and human health. Among them, chlorotoluene and nitrotoluene are toxic to hydrobios and irritate the skin, eyes, and respiratory organs of humans. We herein report the development of recombinant microbial biosensors for cheap and rapid monitoring of chlorotoluene and nitrotoluene compounds. Plasmids were constructed by inserting the xylR regulatory gene for BTEX (benzene, toluene, ethylbenzene, and xylene) degradation into upstream of Po' (the DmpR activator promoter Po with the deletion of its own upstream activating sequences) or Pu (the cognate promoter of XylR)::lacZ (the ${\beta}$-galactosidase gene) and transformed into Escherichia coli $DH5{\alpha}$. In the presence of inducers, the biosensor cells immobilized in agarose developed a red color in 1-2 h due to the hydrolysis of chlorophenol red ${\beta}$-D-galactopyranoside (CPRG), a substrate of ${\beta}$-galactosidase that was expressed by the inducers. Among BTEX, high responses were specifically observed with o-, m-, p-chlorotoluene ($0.1{\mu}M-100 mM$) and o-, m-, p-nitrotoluene (0.1 mM-100 mM). Po' demonstrated higher responses than those with Pu. The biosensors immobilized in agarose showed good stability after 21 days' storage at $4^{\circ}C$, and responses in untreated wastewater spiked with chlorotoluene and nitrotoluene, suggesting they can be used to detect compounds in wastewater.

Comparative Analysis of Src Activity in Plasma Membrane Subdomains via Genetically Encoded FRET Biosensors (유전적으로 암호화된 FRET 바이오센서를 통한 세포막 하위 도메인의 Src 활성 비교 분석)

  • Gyuho Choi;Yoon-Kwan Jang;Jung-Soo Suh;Heonsu Kim;Sanghyun Ahn;Tae-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.191-198
    • /
    • 2023
  • As a member of the focal adhesion complex of the plasma membrane, Src is a nonreceptor tyrosine kinase that controls cell adhesion and motility. However, how Src activity is regulated in the plasma membrane microdomain in response to components of the extracellular matrix (ECM) remains unclear. This study compared and investigated the activity of Src in response to three representative ECM proteins: collagen type 1, fibronectin, and laminin. Genetically encoded FRET-based Src biosensors for plasma membrane subdomains were used. FRET-based biosensors allow the real-time analysis of protein activity in living cells based on their high spatiotemporal resolution. The results showed that Src activity was maintained at a high level under all ECM conditions of the lipid raft, and there was no significant difference between the ECM conditions. In contrast, Src activity was maintained at a low level in the non-lipid raft membrane. In addition, the Src activity of lipid rafts remained significantly higher than that of non-lipid raft regions under the same ECM conditions. In conclusion, this study demonstrates that Src activity can be controlled differently by lipid rafts and non-lipid raft microdomains.

The Eukaryote Alternative: Advantages of Using Yeasts in Place of Bacteria in Microbial Biosensor Development

  • Walmsley, Richard M.;Keenan, Patrick
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.387-394
    • /
    • 2000
  • The relationship between Man and yeast has been a successful and enduring one. The characteristics of yeast have made it an ideal tool in scientific research and as such, it has been used extensively. In this review some of the advantages, methods and applications of yeasts in the biosensor field are outlined. In doing so, we propose a eukaryotic alternative to the current battery of bacteria-based microbial biosensors.

  • PDF

바이오 센서 및 랩온어칩

  • 박유근
    • The Magazine of the IEIE
    • /
    • v.31 no.1
    • /
    • pp.58-72
    • /
    • 2004
  • Smart sensors and biochip technologies have received a great deal of attention in recent years not only because of the enormous potential markets in the healthcare expenditures but more importantly because of its great impact on the quality of human life in the future. Collaborative research among BT (Bio Technologies), IT (Information Technologies) and NT (Nano Technologies) will bring us a new paradigm of the healthcare services. Examples include disease prediction based on the genetic tests, personal medicines, point-of-care analysis, rapid and sensitive infectious disease diagnostics, environmental monitoring for chemical or biological warfares, intelligent drug delivery systems etc. In this report, recent accomplishment in the research area on biosensors, DNA chips, Protein Chips and Lab-on-a-chips are reviewed.

  • PDF

Characterization of partially functionalized diamond for detecting single mismatched DNA (부분적 기능화된 다이아몬드를 이용한 single mismatched DNA 검출 특성)

  • Yang, Jung-Hoon;Song, Kwang-Soup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.29-33
    • /
    • 2013
  • Here we report a partially aminated micropattern via direct functionalization and examine eleven different solution-phase probe DNAs hybridizing with the same target DNA on both hydrogen and oxygen terminated diamond. The hybridization intensities determined by epifluorescence microscopy were compared and are influenced strongly by the negatively charged surface and mismatched position of its sequence with immobilized probe DNA.

Graphene Derivatives for Bioanalytical Chemistry

  • Min, Dal-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.10-10
    • /
    • 2011
  • Graphene and graphene derivatives have attracted enormous attention from various research fields for applications in electronic devices, transparent electrodes, biosensors, drug delivery system and surface coatings. In the viewpoint of chemist, the chemical structure of graphene derivatives seems intriguing but detailed structures are being revealed only recently while engineering approaches for various applications are being executed very actively. Recently, several reports are available on interactions of graphene with biomolecules including proteins and nucleic acids. In this talk, I'll introduce recent studies which harness graphene derivatives for developing bioanalytical platforms to quantitatively analyze various enzyme activities. The systems rely on attractive interaction between graphene oxide and nucleic acids or phospholipids.

  • PDF

Environmental Sensor Selection : classification and its applications

  • Rhee, In-Hyoung;Cho, Daechul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.87-92
    • /
    • 2004
  • This review focuses on the developed and the being developed environmental sensors in particular biological sensors. As well as discussing the classification and some main principles, presenting current trend of the environmental sensors is given. Two main categories are immunosensors and catalytic sensors. In addition to those. DNA or RNA sensors or protein based sensors are discussed. Some crucial examples of the applications of such sensors are given to show how the sensor technology it used for environmental and biological monitoring, biomarkers of exposure.

  • PDF

Surface Mass Imaging Technique for Nano-Surface Analysis

  • Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.113-114
    • /
    • 2013
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a powerful technique for producing chemical images of small biomolecules (ex. metabolites, lipids, peptides) "as received" because of its high molecular specificity, high surface sensitivity, and submicron spatial resolution. In addition, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) imaging is an essential technique for producing chemical images of large biomolecules (ex. genes and proteins). For this talk, we will show that label-free mass imaging technique can be a platform technology for biomedical studies such as early detection/diagnostics, accurate histologic diagnosis, prediction of clinical outcome, stem cell therapy, biosensors, nanomedicine and drug screening [1-7].

  • PDF