• Title/Summary/Keyword: Biosensor elements

Search Result 7, Processing Time 0.035 seconds

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja;Hyeon, Seok Hywan;Cho, Jae Ho;Lim, Woon Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.510-518
    • /
    • 2021
  • Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.

Biosensors (바이오센서)

  • 김의락
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.423-427
    • /
    • 2000
  • Intense research on biosensors has been performed in a number of different institution over the past 15 years, but relatively few commercial products have resultingly, the blood glucose sensor is a good example of a product which penetrated the market. However recently, the development of electrochemical and optical technologies has accelerated the turnover of the research as is illustrated by a rapid increase in the number of point-of-care diagnostic systems and analytical devices. Examples of such biosensors used in the fields of medical diagnostics, bioprocess control, and environmental monitoring are described, and summarized in an introduction to their characteristics, structures, and functions, given.

  • PDF

Nanogap-Based Electrochemical Detection of Protein, Virus, and Bacteria

  • Park, Dae Keun;Kim, Soohyun;Yun, Kum-Hee;Pyo, Hanna;Kang, Aeyeon;Kim, Daehee;Lee, Cho Yeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.353.2-353.2
    • /
    • 2016
  • We studied electrochemical detection of Botulinum neurotoxin, Vaccinia virus, and Streptococcus Pneumoniae based on nanogap device. Target bio substances were employed as representative targets of protein, virus, and bacteria, respectively. Redox current generated by ferri/ferrocyanide as an electroactive probe was enhanced according to gap distance which was controlled by surface-catalyzed chemical deposition. We found that enhanced electrochemical signal leads more sensitive signal changes according to selective interaction of target and its complementary elements on the electrode or gap area. In case of Botulinum neurotoxin, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide which blocked redox cycling. Redox cycling was also hindered by Vaccinia virus and Streptococcus Pneumoniae which were selectively immobilized in the gap area.

  • PDF

Large Scale Directed Assembly of SWNTs and Nanoparticles for Electronics and Biotechnology

  • Busnaina, Ahmed;Smith, W.L.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.9-9
    • /
    • 2011
  • The transfer of nano-science accomplishments into technology is severely hindered by a lack of understanding of barriers to nanoscale manufacturing. The NSF Center for High-rate Nanomanufacturing (CHN) is developing tools and processes to conduct fast massive directed assembly of nanoscale elements by controlling the forces required to assemble, detach, and transfer nanoelements at high rates and over large areas. The center has developed templates with nanofeatures to direct the assembly of carbon nanotubes and nanoparticles (down to 10 nm) into nanoscale trenches in a short time (in seconds) and over a large area (measured in inches). The center has demonstrated that nanotemplates can be used to pattern conducting polymers and that the patterned polymer can be transferred onto a second polymer substrate. Recently, a fast and highly scalable process for fabricating interconnects from CMOS and other types of interconnects has been developed using metallic nanoparticles. The particles are precisely assembled into the vias from the suspension and then fused in a room temperature process creating nanoscale interconnect. The center has many applications where the technology has been demonstrated. For example, the nonvolatile memory switches using (SWNTs) or molecules assembled on a wafer level. A new biosensor chip (0.02 $mm^2$) capable of detecting multiple biomarkers simultaneously and can be in vitro and in vivo with a detection limit that's 200 times lower than current technology. The center has developed the fundamental science and engineering platform necessary to manufacture a wide array of applications ranging from electronics, energy, and materials to biotechnology.

  • PDF

Measurement of Effective Refractive Index of Anodic Aluminum Oxide Using a Prism Coupler

  • Gong, Su-Hyun;Cho, Y.H.;Stolz, Arnaud;Gokarna, Anisha;Dogheche, Elhadj;Ryu, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.195-195
    • /
    • 2010
  • In recent years, Anodic aluminum oxide(AAO) has become popular and attractive materials. It can be easily fabricated and self-organized pore structures. It has been widely used as a biosensor membrane, photonic crystal for optical circuit and template for nanotube growth etc. In previous papers, the theory was developed that AAO shows anisotropic optical properties, since it has anisotropic structure with numerous cylindrical pores. It gives rise to the anisotropy of the refractive index called as birefringence. It can be used as conventional polarizing elements with high efficiency and low cost. Therefore, we would like to compare the theory and experimental results in this study. One method which can measure effective refractive index of thin film is the prism coupling technique. It can give accurate results fast and simply. Furthermore, we can also measure separately the refractive index with different polarization using polarization of the laser (TE mode and TM mode). We calculated the effective refractive index with effective medium approximations (EMAs) by pore size in the SEM image. EMAs are physical models that describe the macroscopic system as the homogeneous and typical method of all mean field theories.

  • PDF

High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents

  • Graziani, Ana Claudia;Stets, Maria Isabel;Lopes, Ana Luisa Kalb;Schluga, Pedro Henrique Caires;Marton, Soledad;Ferreira, Ieda Mendes;de Andrade, Antero Silva Ribeiro;Krieger, Marco Aurelio;Cardoso, Josiane
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.838-843
    • /
    • 2017
  • Sepsis is a major health problem worldwide, with an extremely high rate of morbidity and mortality, partly due to delayed diagnosis during early disease. Currently, sepsis diagnosis requires bacterial culturing of blood samples over several days, whereas PCR-based molecular diagnosis methods are faster but lack sensitivity. The use of biosensors containing nucleic acid aptamers that bind targets with high affinity and specificity could accelerate sepsis diagnosis. Previously, we used the systematic evolution of ligands by exponential enrichment technique to develop the aptamers Antibac1 and Antibac2, targeting the ubiquitous bacterial peptidoglycan. Here, we show that these aptamers bind to four gram-positive and seven gram-negative bacterial sepsis agents with high binding efficiency. Thus, these aptamers could be used in combination as biological recognition elements in the development of biosensors that are an alternative to rapid bacteria detection, since they could provide culture and amplification-free tests for rapid clinical sepsis diagnosis.

Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles (나노입자 자기조립 단일층을 이용한 유기메모리 소자)

  • Jung, Hunsang;Oh, Sewook;Kim, Yejin;Kim, Minkeun;Lee, Hyun Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.515-520
    • /
    • 2012
  • In this review, the fabrication of silicon based memory capacitor and organic memory thin film transistors (TFTs) was discussed for their potential identification tag applications and biosensor applications. Metal or non-metal nanoparticles (NPs) could be capped with chemicals or biomolecules such as protein and oligo-DNA, and also be self-assembly monolayered on corresponding target biomolecules conjugated dielectric layers. The monolayered NPs were formed to be charging elements of a nano floating gate layer as forming organic memody deivces. In particular, the strong and selective binding events of the NPs through biomolecular interactions exhibited effective electrostatic phenomena in memory capacitors and TFTs formats. In addition, memory devices fabricated as organic thin film transistors (OTFTs) have been intensively introduced to facilitate organic electronics era on flexible substrates. The memory OTFTs could be applicable eventually to the development of new conceptual devices.