• Title/Summary/Keyword: Biomimetic Microrobot

Search Result 2, Processing Time 0.02 seconds

Design of a Propagation Wave Type Microrobot for Moving on the Slippery Surface

  • Kim, Eui-Jin;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2072-2077
    • /
    • 2003
  • Animal-like robots are serving an important role as a linkage between biology and engineering. So, in this paper, we aim to develop a biomimetic microrobot that mimics the locomotion mechanism of a gastropod. This microrobot has 3 DOF (x, y translation and rotation), and has small size, unlimited traveling range, high resolution and low cost. Its movement can be made using propagation wave that is generated by the controllable sinusoidal voltage source and piezoelectric effects. This soft motion that can be generated by propagation wave and piezoelectric mechanism would be useful for the motion on the slippery surface. So we modeled the propagation wave mechanism including piezoelectric effect and friction on the contact surface, and could know the velocity of the microrobot is dependent on the driving frequency, input voltage peak, propagation wavelength and surface friction coefficient. With these results we design the microrobot, and accomplish its fabrication and experimentation. The development of this microrobot shall be aimed to design an autonomous moving actuator like animal. Also it can be used from micromanipulation system technology to biology and medicine.

  • PDF

Investigation of Generative Contactile Force of Frog Muscle under Electrical Stimulation

  • Park, Suk-Ho;Jee, Chang-Yeol;Kwon, Ji-Woon;Park, Sung-Jin;Kim, Byung-Kyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1914-1919
    • /
    • 2006
  • Recently, the microrobots powered by biological muscle actuators were proposed. Among the biological muscle actuators, frog muscle is well known as a good muscle actuator and has a large displacement, actuation forces and piezoelectric properties. Therefore, for the application of the biomimetic microrobot, this paper reports the electromechanical properties of frog muscle. First of all, the experimental setup has been established for measuring generative force of the frog muscle. Through the various electrical stimulating inputs to the frog muscle, we measured the contractile force of the frog muscle. From the measuring results, we found that the actuating contractile force responses of the frog muscle are determined by the amplitude, frequency, duty ratio, and wave form of the stimulation signal. This study will be beneficial for the development of the microrobot actuated by frog muscle.