• Title/Summary/Keyword: Biometric systems

Search Result 198, Processing Time 0.033 seconds

A Multi-Level Integrator with Programming Based Boosting for Person Authentication Using Different Biometrics

  • Kundu, Sumana;Sarker, Goutam
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1114-1135
    • /
    • 2018
  • A multiple classification system based on a new boosting technique has been approached utilizing different biometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting, palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometric traits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system is comprised of three different super-classifiers to individually perform person identification. The individual classifiers corresponding to each super-classifier in their turn identify different biometric features and their conclusions are integrated together in their respective super-classifiers. The decisions from individual super-classifiers are integrated together through a mega-super-classifier to perform the final conclusion using programming based boosting. The mega-super-classifier system using different super-classifiers in a compact form is more reliable than single classifier or even single super-classifier system. The system has been evaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrix for each of the single classifiers, super-classifiers and finally the mega-super-classifier. The different performance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable. Thereby making the system is efficient and effective.

A biometric information collecting system for biomedical big data analysis (생체 의학 빅 데이터 분석을 위한 생체 정보 수집 시스템)

  • Lim, Damsub;Hong, Sunhag;Ku, Mino;Min, Dugki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.513-516
    • /
    • 2013
  • In this paper, we present an information collecting system in medical information management domain. Our proposed system performs a systemized process, consisting of collection, transmission, and management, to develop intelligent medical information system and medical big data processing system. Our information collecting system consists of low-power biomedical sensors, biomedical information collecting devices, and storage systems. Currently, almost biomedical information of patients is collected manually by employees like nurses and medical doctors. Therefore, collected biometric data can be error-pronoun data. Since there is a lack to make big data of medical information, it is difficult to enhance the quality of medical services and researches. Accordingly, through our proposed system, we can overcome the problems like error-pronoun biometric data. In addition, we can extremely extend the area of collectable biometric data. Furthermore, using this system, we are able to make a real-time biomedical analysis system, like a real-time patient diagnosis system, and establish a strategy to against future medical markets changing rapidly.

  • PDF

Implementation of Embedded Biometrics Technologies : A Case of a Security Token for Fingerprints (임베디드 생체 인식 기술 구현 : 지문 보안 토큰 사례)

  • 김영진;문대성;반성범;정용화;정교일
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.39-46
    • /
    • 2003
  • Biometric technologies using biometric information like fingerprints features are in wide use for the secure user authentication in many services including log-in of computer systems, entrance ID and E-commercial security. Nowadays, biometric technologies are ported into small embedded systems like security tokens or smart cards due to the merit of being secure and automatic in comparison with the previous method in user authentication such as using a PIN. In this paper, the security token developed as an embedded system and tile user authentication system implemented and tested using fingerprints information are described. Communications between the security token and tile host are tested and verified with USB. And, execution time and runtime memory on tile security token board was measured and performance improvement was described. In addition, requisites for the transit from the security token to the match-on-card was mentioned.

Development of Signal Detection Methods for ECG (Electrocardiogram) based u-Healthcare Systems (심전도기반 u-Healthcare 시스템을 위한 파형추출 방법)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.18-26
    • /
    • 2009
  • In this paper, we proposed multipurpose signal detection methods for ECG (electrocardiogram) based u-healthcare systems. For ECG based u-healthcare system, QRS signal extraction for cardiovascular disease diagnosis is essential. Also, for security and convenience reasons, it is desirable if u-healthcare system support biometric identification directly from user's bio-signal such as ECG for this case. For this, from Lead II signal, we developed QRS signal detection method and also, we developed signal extraction method for biometric identification using Lead II signal which is relatively robust from signal alteration by aging and diseases. For QRS signal detection capability from Lead II signal, ECG signals from MIT-BIH database are used and it showed 99.36% of accuracy and 99.68% of sensitivity. Also, to show the performance of signal extraction capability for biometric diagnosis purpose, Lead III signals are measured after drinking, smoking, or exercise to consider various monitoring conditions and it showed 99.92% of accuracy and 99.97% of sensitivity.

A Study on a Fingerprint Identification System Complemented with Additional Three-Dimensional Information (3차원 추가 정보가 보강된 지문인식 시스템에 관한 연구)

  • Lee, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1310-1318
    • /
    • 2012
  • This study presents a new system that can make up for the decrease in identification rate due to the environmental or physical factors of a fingerprint identification system, which is most actively used among existing biometric systems. Considered most usable in life among many types of biometrics due to the convenience of use, smaller initial investment, and the smaller size, fingerprint identification is widely used in diverse applications. However, a fingerprint identification system has several defects, including environmental factors, physical skin damage, and variable sensor contact, lowering the identification rate in comparison to other biometric systems. On the basis of the existing fingerprint system, this study presents a more efficient system that can improve the identification rate by getting additional biometric information and three-dimensional finger type information through the use of simple and inexpensive additional equipment, which can be used in diverse areas.

A study on Iris Recognition using Wavelet Transformation and Nonlinear Function

  • Hur, Jung-Youn;Truong, Le Xuan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.553-559
    • /
    • 2004
  • In todays security industry, personal identification is also based on biometric. Biometric identification is performed basing on the measurement and comparison of physiological and behavioral characteristics, Biometric for recognition includes voice dynamics, signature dynamics, hand geometry, fingerprint, iris, etc. Iris can serve as a kind of living passport or living password. Iris recognition system is the one of the most reliable biometrics recognition system. This is applied to client/server system such as the electronic commerce and electronic banking from stand-alone system or networks, ATMs, etc. A new algorithm using nonlinear function in recognition process is proposed in this paper. An algorithm is proposed to determine the localized iris from the iris image received from iris input camera in client. For the first step, the algorithm determines the center of pupil. For the second step, the algorithm determines the outer boundary of the iris and the pupillary boundary. The localized iris area is transform into polar coordinates. After performing three times Wavelet transformation, normalization was done using sigmoid function. The converting binary process performs normalized value of pixel from 0 to 255 to be binary value, and then the converting binary process is compare pairs of two adjacent pixels. The binary code of the iris is transmitted to the by server. the network. In the server, the comparing process compares the binary value of presented iris to the reference value in the University database. Process of recognition or rejection is dependent on the value of Hamming Distance. After matching the binary value of presented iris with the database stored in the server, the result is transmitted to the client.

  • PDF

Big Data Model for Analyzing Plant Growth Environment Informations and Biometric Informations (농작물 생육환경정보와 생체정보 분석을 위한 빅데이터 모델)

  • Lee, JongYeol;Moon, ChangBae;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.15-23
    • /
    • 2020
  • While research activities in the agricultural field for climate change are being actively carried out, smart agriculture using information and communication technology has become a new trend in line with the Fourth Industrial Revolution. Accordingly, research is being conducted to identify and respond to signs of abnormal growth in advance by monitoring the stress of crops in various outdoor environments and soil conditions. There are also attempts to analyze data collected in real time through various sensors using artificial intelligence techniques or big data technologies. In this paper, we propose a big data model that is effective in analyzing the growth environment informations and biometric information of crops by using the existing relational database for big data analysis. The performance of the model was measured by the response time to a query according to the amount of data. As a result, it was confirmed that there is a maximum time reduction effect of 23.8%.

A Study on Assessing User Preferences for Autonomous Driving Behavior Using a Driving Simulator (드라이빙 시뮬레이터를 활용한 자율주행 이용자 선호도 평가에 관한 연구)

  • Dohoon Kim;Sungkab Joo;Homin Choi;Junbeom Ryu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.147-159
    • /
    • 2023
  • In order to make autonomous vehicles more trustworthy, it is necessary to focus on the users of autonomous vehicles. By evaluating the preferences for driving behaviors of autonomous vehicles, we aim to identify driving behaviors that increase the acceptance of users in autonomous vehicles. We implemented two driving behaviors, aggressive and cautious, in a driving simulator and allowed users to experience them. Biometric data was collected during the ride, and pre- and post-riding surveys were conducted. Subjects were categorized into two groups based on their driving habits and analyzed against the collected biometric data. Both aggressive and cautious driving subjects preferred the cautious driving behavior of autonomous vehicles.

Bio-Sensing Convergence Big Data Computing Architecture (바이오센싱 융합 빅데이터 컴퓨팅 아키텍처)

  • Ko, Myung-Sook;Lee, Tae-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.

Transformation Based Walking Speed Normalization for Gait Recognition

  • Kovac, Jure;Peer, Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2690-2701
    • /
    • 2013
  • Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometric can be captured at public places from a distance without subject's collaboration, awareness or even consent. Although current approaches give encouraging results, we are still far from effective use in practical applications. In general, methods set various constraints to circumvent the influence factors like changes of view, walking speed, capture environment, clothing, footwear, object carrying, that have negative impact on recognition results. In this paper we investigate the influence of walking speed variation to different visual based gait recognition approaches and propose normalization based on geometric transformations, which mitigates its influence on recognition results. With the evaluation on MoBo gait dataset we demonstrate the benefits of using such normalization in combination with different types of gait recognition approaches.