• Title/Summary/Keyword: Biometric Authentication

Search Result 261, Processing Time 0.023 seconds

Biometric verified authentication of Automatic Teller Machine (ATM)

  • Jayasri Kotti
    • Advances in environmental research
    • /
    • v.12 no.2
    • /
    • pp.113-122
    • /
    • 2023
  • Biometric authentication has become an essential part of modern-day security systems, especially in financial institutions like banks. A face recognition-based ATM is a biometric authentication system, that uses facial recognition technology to verify the identity of bank account holders during ATM transactions. This technology offers a secure and convenient alternative to traditional ATM transactions that rely on PIN numbers for verification. The proposed system captures users' pictures and compares it with the stored image in the bank's database to authenticate the transaction. The technology also offers additional benefits such as reducing the risk of fraud and theft, as well as speeding up the transaction process. However, privacy and data security concerns remain, and it is important for the banking sector to instrument solid security actions to protect customers' personal information. The proposed system consists of two stages: the first stage captures the user's facial image using a camera and performs pre-processing, including face detection and alignment. In the second stage, machine learning algorithms compare the pre-processed image with the stored image in the database. The results demonstrate the feasibility and effectiveness of using face recognition for ATM authentication, which can enhance the security of ATMs and reduce the risk of fraud.

Multi-Factor Authentication System based on Software Secure Card-on-Matching For Secure Login (안전한 로그인을 위한 소프트 보안카드 기반 다중 인증 시스템)

  • Lee, Hyung-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.28-38
    • /
    • 2009
  • Login process uses both ID and password information to authenticate someone and to permit its access privilege on system. However, an attacker can get those ID and password information by using existing packet sniffing or key logger programs. It cause privacy problem as those information can be used as a hacking and network attack on web server and web e-mail system. Therefore, a more secure and advanced authentication mechanism should be required to enhance the authentication process on existing system. In this paper, we propose a multi-factor authentication process by using software form of secure card system combined with existing ID/Password based login system. Proposed mechanism uses a random number generated from the his/her own handset with biometric information. Therefore, we can provide a one-time password function on web login system to authenticate the user using multi-factor form. Proposed scheme provide enhanced authentication function and security because it is a 'multi-factor authentication mechanism' combined with handset and biometric information on web login system.

A Study on Security Risk according to the activation of Bio-Authentication Technology (바이오 인증 기술의 활성화에 따른 보안 위험성에 관한 연구)

  • Jeon, Jeong Hoon
    • Convergence Security Journal
    • /
    • v.16 no.5
    • /
    • pp.57-63
    • /
    • 2016
  • In recent years, there is growing interest in 'Fin-tech' in the domestic and international financial sector. And a variety of services in such a situation has emerged. To ensure the safety of from hacking attacks, many new technologies have been developed. These leading technology is the Bio-authentication method that you consider applying to the financial sector. Bio authentication is using biometric information. Also it is known that can cope the threat of fabrication and modifying attacks with shared and stored. However, Recently, When you look at hacking incidents of biometric data(560 million cases) in the United States Office of Personnel Management and advent of the fingerprints counterfeit technology, We can be known that should be reconsidered about the safety of bio-certification. Especially, it should be provided with a response measures for the problem of embezzlement that biometric information already been leaked. Thereby In this paper, by investigating biometric technologies and practices applied and of the vulnerability factor in many industries, it expected to be utilized in the prepared threats countermeasures in accordance with the application of the biometric authentication technology in a future.

Biometrics-based Key Generation Research: Accomplishments and Challenges

  • Ha, Lam Tran;Choi, Deokjai
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • The security and privacy issues derived from unsecurely storing biometrics templates in biometric authentication/ recognition systems have opened a new research area about how to secure the stored biometric templates. Biometrics-based key generation is the newest approach that provides not only a mechanism to protect stored biometric templates in authentication/ recognition systems, but also a method to integrate biometric systems with cryptosystems. Therefore, this approach has attracted much attention from researchers worldwide. A review of current research state to summarize the achievements and remaining works is necessary for further works. In this study, we first outlined the requirements and the primary challenges when implementing these systems. We then summarize the proposed techniques and achievements in representative studies on biometrics-based key generation. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further researches in this area.

Privacy Preserving User Authentication Using Biometric Hardware Security Module (바이오 보안토큰을 이용한 프라이버시 보호형 사용자 인증기법)

  • Shin, Yong-Nyuo;Chun, Myung-Geun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.2
    • /
    • pp.347-355
    • /
    • 2012
  • A biometric hardware security module is a physical device that comes in the form of smartcard or some other USB type security token is composed with biometric sensor and microcontroller unit (MCU). These modules are designed to process key generation and electronic signature generation inside of the device (so that the security token can safely save and store confidential information, like the electronic signature generation key and the biometric sensing information). However, the existing model is not consistent that can be caused by the disclosure of an ID and password, which is used by the existing personal authentication technique based on the security token, and provide a high level of security and personal authentication techniques that can prevent any intentional misuse of a digital certificate. So, this paper presents a model that can provide high level of security by utilizing the biometric security token and Public Key Infrastructure efficiently, presenting a model for privacy preserving personal authentication that links the biometric security token and the digital certificate.

Multi-modal Authentication Using Score Fusion of ECG and Fingerprints

  • Kwon, Young-Bin;Kim, Jason
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.132-146
    • /
    • 2020
  • Biometric technologies have become widely available in many different fields. However, biometric technologies using existing physical features such as fingerprints, facial features, irises, and veins must consider forgery and alterations targeting them through fraudulent physical characteristics such as fake fingerprints. Thus, a trend toward next-generation biometric technologies using behavioral biometrics of a living person, such as bio-signals and walking characteristics, has emerged. Accordingly, in this study, we developed a bio-signal authentication algorithm using electrocardiogram (ECG) signals, which are the most uniquely identifiable form of bio-signal available. When using ECG signals with our system, the personal identification and authentication accuracy are approximately 90% during a state of rest. When using fingerprints alone, the equal error rate (EER) is 0.243%; however, when fusing the scores of both the ECG signal and fingerprints, the EER decreases to 0.113% on average. In addition, as a function of detecting a presentation attack on a mobile phone, a method for rejecting a transaction when a fake fingerprint is applied was successfully implemented.

Advanced Mobile Devices Biometric Authentication Model Based on Compliance (컴플라이언스 기반의 발전된 모바일 기기 생체 인증 모델)

  • Jung, Yong-hun;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.879-888
    • /
    • 2018
  • Along with the recent worldwide development of fintech, FIDO (Fast IDentity Online) using biometric technology is rapidly growing in the mobile payment market, replacing the existing password system. This FIDO authentication must be processed in a reliable environment that requires high level of security, as sensitive biometrics is being processed. However, this environment is currently dependent on the manufacturer as it is supported by certain hardware on the smartphone. Therefore, this thesis proposes a server-based authentication model using distributed management of compliance based biometric information that can be used universally safely without the need for specific hardware in mobile environments.

Two Factor Face Authentication Scheme with Cancelable Feature (두 가지 보안 요소를 사용하는 취소 가능한 얼굴 인증 기술)

  • Kang, Jeon-Il;Lee, Kyung-Hee;Nyang, Dae-Hun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 2006
  • Though authentication using biometric techniques has conveniences for people, security problems like the leakage of personal bio-information would be serious. Even if cancelable biometric is a good solution for the problems, only a few biometric authentication scheme with cancelable feature has been published. In this paper, we suggest a face authentication scheme with two security factors: password and face image. Using matching algorithm in the permuted domain, our scheme is designed to be cancelable in the sense that templates that is composed of permutation and weight vector can be changed freely.

Design of Smartphone Secure Keypad Using Indirect Pattern (간접 패턴을 이용하는 스마트폰 보안 키패드 설계)

  • Choi, Dongmin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.932-944
    • /
    • 2022
  • Smartphones, are currently equipped with high-performance hardware to process large amounts of data and provide most of the functions provided by desktop PCs. In addition, the smartphones enable quick user authentication through biometric information collected from embedded sensors. However, the biometric authentication method is sometimes rejected due to social and cultural environment, security vulnerabilities, and misrecognition rate. Thus, conventional authentication methods such as PIN and pattern authentication are still mainly used. Consider the latest foldable and bendable smartphones. These devices may be vulnerable to social engineering attacks as they use conventional authentication methods without considering their form factors. In this study, therefore, we propose an authentication method using partial elements of PIN and pattern authentication as a way to increase the security of the conventional authentication methods and consider the recent form factors. According to the performance evaluation results, our method provides improved safety compared to the conventional methods.

Energy-Efficient Biometrics-Based Remote User Authentication for Mobile Multimedia IoT Application

  • Lee, Sungju;Sa, Jaewon;Cho, Hyeonjoong;Park, Daihee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6152-6168
    • /
    • 2017
  • Recently, the biometric-based authentication systems such as FIDO (Fast Identity Online) are increased in mobile computing environments. The biometric-based authentication systems are performed on the mobile devices with the battery, the improving energy efficiency is important issue. In the case, the size of images (i.e., face, fingerprint, iris, and etc.) affects both recognition accuracy and energy consumption, and hence the tradeoff analysis between the both recognition accuracy and energy consumption is necessary. In this paper, we propose an energy-efficient way to authenticate based on biometric information with tradeoff analysis between the both recognition accuracy and energy consumption in multimedia IoT (Internet of Things) transmission environments. We select the facial information among biometric information, and especially consider the multicore-based mobile devices. Based on our experimental results, we prove that the proposed approach can enhance the energy efficiency of GABOR+LBP+GRAY VALUE, GABOR+LBP, GABOR, and LBP by factors of 6.8, 3.6, 3.6, and 2.4 over the baseline, respectively, while satisfying user's face recognition accuracy.