• Title/Summary/Keyword: Biomedical technology

Search Result 2,697, Processing Time 0.03 seconds

A Comprehensive Analysis of Potential Complications after Oblique Lumbar Interbody Fusion : A Review of Postoperative Magnetic Resonance Scans in Over 400 Cases

  • Kang-Hoon Lee;Su-Hun Lee;Jun-Seok Lee;Young-Ha Kim;Soon-Ki Sung;Dong-Wuk Son;Sang-Weon Lee;Geun-Sung Song
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.5
    • /
    • pp.550-559
    • /
    • 2024
  • Objective : This study focuses on identifying potential complications following oblique lumbar interbody fusion (OLIF) through routine magnetic resonance (MR) scans. Methods : From 650 patients who underwent OLIF from April 2018 to April 2022, this study included those with MR scans taken 1-week post-operatively, and only for indirect decompression patients. The analysis evaluated postoperative MR images for hematoma, cage insertion angles, and indirect decompression efficiency. Patient demographics, post-operatively symptoms, and complications were also evaluated. Results : Out of 401 patients enrolled, most underwent 1- or 2-level OLIF. Common findings included approach site hematoma (65.3%) and contralateral psoas hematoma (19%). The caudal level OLIF was related with less orthogonality and deep insertion of cage. Incomplete indirect decompression occurred in 4.66% of cases but did not require additional surgery. Rare but symptomatic complications included remnant disc rupture (four cases, 1%) and synovial cyst rupture (four cases, 1%). Conclusion : This study has identified potential complications associated with OLIF, including approach site hematoma, contralateral psoas hematoma, cage malposition risk at caudal levels, and radiologically insufficient indirect decompression. Additionally, it highlights rare, yet symptomatic complications such as remnant disc rupture and synovial cyst rupture. These findings contribute insights into the relatively under-explored area of OLIF complications.

Multimodal Imaging of Sarcopenia using Optical Coherence Tomography and Ultrasound in Rat Model

  • Jeon, Byeong Hwan;Chae, Yu-Gyeong;Hwang, Sang Seok;Kim, Dong Kyu;Oak, Chulho;Park, Eun-Kee;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2014
  • Sarcopenia, or reduced muscle mass and volume, is due to various factors such as senile change, neuronal degeneration, drug, malignancy, and sepsis. Sarcopenia with the aging process has been evidenced by the decline in muscle mass by 0.5 to 1% per year with 3-5% reduction in muscle strength for 10 years between the ages of 40 and 50, and a 1-2% of decline of mass every year in people aged 60-70. Therefore, early diagnosis and understanding the mechanism of sarcopenia are crucial in the prevention of muscle loss. However, it is still difficult to image changes of muscle microstructure due to a lack of techniques. In this study, we developed an animal model using denervated rats to induce a rapid atrophy in the tibialis anterior (TA) and imaged its structural changes using optical coherence tomography (OCT) along with histologic and ultrasound analyses. Ultrasound showed changes of overall muscle size. Histology revealed that the atrophic TA muscle displayed an increased size variability of muscle fiber and inflammatory changes. Three dimensional OCT imaged the changes of perimysial grid and muscle fiber structure in real time without sacrifice. These observed advantages of multimodal imaging using OCT and ultrasound would provide clinical benefits in the diagnosis of sarcopenia.

Epidermal Growth Factor Induces Vasoconstriction Through the Phosphatidylinositol 3-Kinase-Mediated Mitogen-Activated Protein Kinase Pathway in Hypertensive Rats

  • Kim, Jung-Hwan;Lee, Chang-Kwon;Park, Hyo-Jun;Kim, Hyo-Jin;So, Hyun-Ha;Lee, Keun-Sang;Lee, Hwan-Myung;Roh, Hui-Yul;Choi, Wahn-Soo;Park, Tae-Kyu;Kim, Bo-Kyung
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2006
  • We investigated whether increased contractile responsiveness to epidermal growth factor (EGF) is associated with altered activation of mitogen-activated protein kinase (MAPK) in the aortic smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. EGF induced contraction and MAPK activity in aortic smooth muscle strips, which were significantly increased in tissues from the DOCA-salt hypertensive rats compared with those from sham-operated rats. AG1478, PD98059, and LY294002, inhibitors of EGF receptor (EGFR) tyrosine kinase, MAPK/extracellular signal-regulated kinase (ERK) kinase, and phosphatidylinositol 3-kinase (PI3K), respectively, inhibited the contraction and the activity of ERK1/2 that were elevated by EGF. Y27632 and GF109203X, inhibitors of Rho kinase and protein kinase C, respectively, attenuated EGF-induced contraction, with no diminution of ERK1/2 activity. Although EGF also elevated the activity of EGFR tyrosine kinase in both sham-operated and DOCA-salt hypertensive rats, the expression and the magnitude of activation did not differ between strips. These results strongly suggest that EGF induces contraction by the activation of ERK1/2, which is regulated by the PI3K pathway in the aortic smooth muscle of DOCA-salt hypertensive rats.

  • PDF

Counterion Effects on Transection Activity of Cationic Lipid Emulsion

  • Kim, Young-Jin;Kim, Tae-Woo;Hesson Chung;Kwon, Ik-Chan;Jeong, Seo -Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.279-283
    • /
    • 2001
  • Cationic lipid emulsion system consisting of 1, 2-dioleoyl-sn-slycero-3-trimethyl-ammonium-propane(DOTAP) and plasmin DNA with various counterions in the lipid headgroups were prepared. The transfection activity of the cationic lipid emulsion systems was then investigated in vitro and in vivo. The complex formation of plasmid DNA lipid emulsion was affected by the counterions through charged headgroup repulsion and also by the salt concen-tration in the media. As such , the transfection activity of the DOTAP emulsion system can be controlled by changing the counterions.

  • PDF

Single-shot Transport-of-intensity Equation Using a Wollaston Prism for Biological Samples

  • Joseph Vermont Bunyi Bandoy;Cuong Manh Nguyen;An Nazmus Sakib;Suhyeon Kim;Hyuk-Sang Kwon
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.502-507
    • /
    • 2024
  • The Wollaston prism (WP) has shown promise in enabling single-shot transport-of-intensity equation (ssTIE) measurements, facilitating efficient phase retrieval in microscopy. The 1-degree prism which produces the minor beam-separation angle is used to prevent distortions. An optical-glass plate is employed in the duplicated beam path to introduce defocusing. This configuration is also advantageous when aligning the beams laterally caused by the refraction of the optical-glass plate, thus allowing another method for single-shot measurements. We applied the proposed method to image the red blood cells (RBCs), demonstrating that the proposed method could be useful in various biological and medical applications.

Rapamycin Influences the Efficiency of In vitro Fertilization and Development in the Mouse: A Role for Autophagic Activation

  • Lee, Geun-Kyung;Shin, Hyejin;Lim, Hyunjung Jade
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1102-1110
    • /
    • 2016
  • The mammalian target of rapamycin (mTOR) regulates cellular processes such as cell growth, metabolism, transcription, translation, and autophagy. Rapamycin is a selective inhibitor of mTOR, and induces autophagy in various systems. Autophagy contributes to clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified-warmed mouse oocytes show acute increases in autophagy during warming, and suggested that it is a natural response to cold stress. In this follow-up study, we examined whether the modulation of autophagy influences survival, fertilization, and developmental rates of vitrified-warmed mouse oocytes. We used rapamycin to enhance autophagy in metaphase II (MII) oocytes before and after vitrification. The oocytes were then subjected to in vitro fertilization (IVF). The fertilization and developmental rates of vitrified-warmed oocytes after rapamycin treatment were significantly lower than those for control groups. Modulation of autophagy with rapamycin treatment shows that rapamycin-induced autophagy exerts a negative influence on fertilization and development of vitrified-warmed oocytes.

Staged Repair of Truncus Arteriosus Associated with Complete Atrioventricular Septal Defect

  • Lim, Mi Hee;Sung, Si Chan;Kim, Hyung Tae;Choi, Kwang Ho;Lee, Hyoung Doo;Kim, Geena
    • Journal of Chest Surgery
    • /
    • v.51 no.5
    • /
    • pp.356-359
    • /
    • 2018
  • We report a case of successful repair of truncus arteriosus (TA) associated with complete atrioventricular septal defect (c-AVSD) using a staged approach. TA associated with c-AVSD is a very rare congenital cardiac anomaly. No report of successful staged repair in South Korea has yet been published. We performed bilateral pulmonary artery banding when the patient was 33 days old, and total correction using an extracardiac conduit was performed at the age of 18 months. The patient recovered uneventfully and is doing well.

Fabrication and characterization of Biological mass detecing system using PZT microcantilever (PZT 마이크로 켄틸레버를 이용한 생체 물질 무게 감지 소자의 제작 및 분석)

  • Lee, Jeong-Hoon;Hwang, Kyo-Seon;Kang, Ji-Yoon;Kim, Sang-Ho;Ahn, Se-Young;Kim, Tae-Song
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2006-2007
    • /
    • 2002
  • MEMS 공정을 이용하여 $SiN_x$를 지지층으로 한 $SiO_2$/Ta/PZT/Pt 의 박막 구조를 가지는 마이크로 켄틸레버를 제작하였다. 켄틸레버의 전기기계적 특성을 LDV (레이저 미소 변위 측정기)를 이용하여 측정하였으며, 이를 통해 전기기계적 거동을 분석하였다. 또한 무게 감지소자로서의 응용을 위해 Au의 증착을 통한 감도를 측정하였으며, streptavidin의 무게를 감지하기 위해 immobilization 공정을 거쳐 thiol 그룹 및 biotin을 표면에 고정화 시킨후 biotin-streptavidin 결합에 의한 전기기계적 신호 분석을 통해 생체 물질의 무게 감지 소자로의 응용을 평가하였다.

  • PDF