• Title/Summary/Keyword: Biomedical data

Search Result 2,257, Processing Time 0.025 seconds

Multi-modal Wearable Device for Cardiac Arrest Detection (심정지 감지를 위한 다생체 신호 측정 웨어러블 디바이스 개발)

  • Ahn, Hyun Jun;You, Sung Min;Cho, Kyeongwon;Park, Hoon Ki;Kim, In Young
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.330-335
    • /
    • 2017
  • Cardiac arrest is owing to the failure of the heart that makes the blood circulation stop. Arrested blood circulation prevents the supply of the oxygen and the glucose and it results the loss of consciousness and, finally, brain death. Many public institution installed the AED for emergency treatment, but, it is not efficient when the patient is alone. In this paper, we made multiplexed wearable device for cardiac arrest detection. With this device, we measure the individual's electrocardiography, heart sound and motion. If the cardiac arrest is detected, the device make a warning horn and transmit the signal for defibrillation. We obtain 98.33% of ECG data, 94.5% of PCG data and 98.38% of IMU data accuracy for each evaluation and 93.33% accuracy for integrated evaluation.

A biomedically oriented automatically annotated Twitter COVID-19 dataset

  • Hernandez, Luis Alberto Robles;Callahan, Tiffany J.;Banda, Juan M.
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.21.1-21.5
    • /
    • 2021
  • The use of social media data, like Twitter, for biomedical research has been gradually increasing over the years. With the coronavirus disease 2019 (COVID-19) pandemic, researchers have turned to more non-traditional sources of clinical data to characterize the disease in near-real time, study the societal implications of interventions, as well as the sequelae that recovered COVID-19 cases present. However, manually curated social media datasets are difficult to come by due to the expensive costs of manual annotation and the efforts needed to identify the correct texts. When datasets are available, they are usually very small and their annotations don't generalize well over time or to larger sets of documents. As part of the 2021 Biomedical Linked Annotation Hackathon, we release our dataset of over 120 million automatically annotated tweets for biomedical research purposes. Incorporating best-practices, we identify tweets with potentially high clinical relevance. We evaluated our work by comparing several SpaCy-based annotation frameworks against a manually annotated gold-standard dataset. Selecting the best method to use for automatic annotation, we then annotated 120 million tweets and released them publicly for future downstream usage within the biomedical domain.

A Study on the Prediction of Drug Efficacy by Using Molecular Structure (분자구조 유사도를 활용한 약물 효능 예측 알고리즘 연구)

  • Jeong, Hwayoung;Song, Changhyeon;Cho, Hyeyoun;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.230-240
    • /
    • 2022
  • Drug regeneration technology is an efficient strategy than the existing new drug development process, which requires large costs and time by using drugs that have already been proven safe. In this study, we recognize the importance of the new drug regeneration aspect of new drug development and research in predicting functional similarities through the basic molecular structure that forms drugs. We test four string-based algorithms by using SMILES data and searching for their similarities. And by using the ATC codes, pair them with functional similarities, which we compare and validate to select the optimal model. We confirmed that the higher the molecular structure similarity, the higher the ATC code matching rate. We suggest the possibility of additional potency of random drugs, which can be predicted through data that give information on drugs with high molecular similarities. This model has the advantage of being a great combination with additional data, so we look forward to using this model in future research.

Development of a Measurement System of the Transferred Pressure from Intermittent Pneumatic Compression Device (간헐적공기압박장치의 전달압력 측정시스템 개발)

  • Lee, Wonhee;Seo, Jong Hyun;Kim, Jun;Kang, Seung Ho;Kim, Gook Han;Chung, Seung Hyun;Kim, Kwang Gi;Kang, Hyun Guy
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • A pressure measurement system was developed to verify magnitude and position of transferred pressure on the body surface during the intermittent pneumatic compression (IPC) which is one of the most well-known methods for the prevention of deep vein thrombosis (DVT). Eighty force sensing resistors (FSR) were arranged on a mannequin leg and a hardware controller sensed, digitized, and transferred pressure data every second while IPC was being applied. Finally, sensed pressure data were color coded and visualized on the 3D model with lab-developed software. The pressure data were also saved to files for further analysis. Using this measurement system, the changing pattern of pressure was measured on the mannequin leg by changing both chamber pressure and cuff tightness. As a result, net pressure transferred onto the body surface is dependent on chamber pressure and cuff tightness. Under the same chamber pressure, the tighter a cuff was worn, the wider compressed area was and the shorter compression cycle was. Also transferred pressure was proportional to both chamber pressure and cuff tightness.

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Estimation of PTT (Pulse Transit Time) by Multirate Filtering Analysis (다중레이트 필터링 기법을 이용한 맥파전달시간 추정)

  • Kim, Hyun-Tae;Kim, Jeong-Hwan;Kim, Kyeong-Seop;Lee, Jae-Ho;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1020-1026
    • /
    • 2013
  • Multirate filtering process on the biological signals like Electrocardiogram (ECG) and Photoplethysmogram (PPG) can be defined as the digital signal processing algorithm in which the sampling rate varies to omit or interpolate the intermediate values between the sampled data. With this aim, we suggest a new multirate filtering algorithm by deleting the extraneous data to eliminate the unwanted degradations such as granular noise due to the usage of high sampling frequency and simultaneously to detect the fiducial features of ECG and PPG with reducing the complexity of resolving fiducial points such as R-peak, Pulse peak and Pulse Transit Time (PTT). After the experimental simulations performed, we can conclude the fact that we can detect the fiducial features of ECG and PPG signal in terms of R-peak, Pulse peak and PTT without the loss of accuracy even if we do not maintain the original sampling frequency.

A Novel Automatic Algorithm for Selecting a Target Brain using a Simple Structure Analysis in Talairach Coordinate System

  • Koo B.B.;Lee Jong-Min;Kim June Sic;Kim In Young;Kim Sun I.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.129-132
    • /
    • 2005
  • It is one of the most important issues to determine a target brain image that gives a common coordinate system for a constructing population-based brain atlas. The purpose of this study is to provide a simple and reliable procedure that determines the target brain image among the group based on the inherent structural information of three-dimensional magnetic resonance (MR) images. It uses only 11 lines defined automatically as a feature vector representing structural variations based on the Talairach coordinate system. Average characteristic vector of the group and the difference vectors of each one from the average vector were obtained. Finally, the individual data that had the minimum difference vector was determined as the target. We determined the target brain image by both our algorithm and conventional visual inspection for 20 healthy young volunteers. Eighteen fiducial points were marked independently for each data to evaluate the similarity. Target brain image obtained by our algorithm showed the best result, and the visual inspection determined the second one. We concluded that our method could be used to determine an appropriate target brain image in constructing brain atlases such as disease-specific ones.

Influence of Moral Sensitivity and Ethical Values on Biomedical Ethics Awareness of Nursing Students (간호대학생의 도덕적 민감성과 윤리적 가치관이 생명의료윤리 인식에 미치는 영향)

  • Kim, Myoung Sook
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.21 no.3
    • /
    • pp.382-392
    • /
    • 2015
  • Purpose: This study was performed to investigate the effects of moral sensitivity and ethical values on biomedical ethics awareness of nursing students. Methods: A descriptive survey design was used for this study. The participants were 324 nursing students from S University located in J city. The data were collected through a questionnaire survey done from September 30 to October 18, 2014. Data were analyzed using a t-test, ANOVA, Scheffe's test, Pearson correlation coefficients, and stepwise multiple regression. Results: The factors influencing nursing students' biomedical ethics awareness were identified as moral sensitivity(${\beta}=.34$), ethical values(${\beta}=.11$), awareness of Korean nurses' declaration of ethics(${\beta}=.15$), religion(${\beta}=.14$), and religious activity(${\beta}=.12$). Five factors explained 10.8% of nursing students' biomedical ethics awareness. Conclusion: The results of this study can be used to develop further educational programs on the moral sensitivity and ethical values for enhancement of nursing students' biomedical ethics awareness.

Antiplatelet Effects of Cordycepin-Enriched WIB-801CE from Cordyceps militaris: Involvement of Thromboxane A2, Serotonin, Cyclooxygenase-1, Thromboxane A2 Synthase, Cytosolic Phospholipase A2

  • Ok, Woo Jeong;Nam, Gi Suk;Kim, Min Ji;Kwon, Hyuk-Woo;Kim, Hyun-Hong;Shin, Jung-Hae;Lim, Deok Hwi;Kwon, Ho-Kyun;Lee, Chang-Hwan;Chung, Soo-Hak;Kim, Jong-Lae;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.127-139
    • /
    • 2016
  • A species of the fungal genus Cordyceps has been used as an ingredient of traditional Chinese medicine. In this study, we prepared cordycepin-enriched WIB-801CE, an ethanol extract from culture solution of Cordyceps militaris-hypha, and evaluated its antiplatelet effects on human platelet aggregation. WIB-801CE dose-dependently inhibited ADP-, collagen-, and thrombin-induced platelet aggregation. These antiplatelet effects by WIB-801CE were associated with the attenuation of thromboxane $A_2$ ($TXA_2$) production and serotonin release by ADP, collagen, and thrombin. The inhibition of $TXA_2$ production by WIB-801CE was due to the inhibition of cyclooxygenase-1, $TXA_2$ synthase, and cytosolic phospholipase $A_2$ activity. Therefore, these data suggest that WIB-801CE may be a beneficial component against protection from platelet aggregation-mediated thrombotic disease.

Biological Pathway Extension Using Microarray Gene Expression Data

  • Chung, Tae-Su;Kim, Ji-Hun;Kim, Kee-Won;Kim, Ju-Han
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.202-209
    • /
    • 2008
  • Biological pathways are known as collections of knowledge of certain biological processes. Although knowledge about a pathway is quite significant to further analysis, it covers only tiny portion of genes that exists. In this paper, we suggest a model to extend each individual pathway using a microarray expression data based on the known knowledge about the pathway. We take the Rosetta compendium dataset to extend pathways of Saccharomyces cerevisiae obtained from KEGG (Kyoto Encyclopedia of genes and genomes) database. Before applying our model, we verify the underlying assumption that microarray data reflect the interactive knowledge from pathway, and we evaluate our scoring system by introducing performance function. In the last step, we validate proposed candidates with the help of another type of biological information. We introduced a pathway extending model using its intrinsic structure and microarray expression data. The model provides the suitable candidate genes for each single biological pathway to extend it.