• Title/Summary/Keyword: Biomedical Ontologies

Search Result 5, Processing Time 0.018 seconds

Biomedical Ontologies and Text Mining for Biomedicine and Healthcare: A Survey

  • Yoo, Ill-Hoi;Song, Min
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.109-136
    • /
    • 2008
  • In this survey paper, we discuss biomedical ontologies and major text mining techniques applied to biomedicine and healthcare. Biomedical ontologies such as UMLS are currently being adopted in text mining approaches because they provide domain knowledge for text mining approaches. In addition, biomedical ontologies enable us to resolve many linguistic problems when text mining approaches handle biomedical literature. As the first example of text mining, document clustering is surveyed. Because a document set is normally multiple topic, text mining approaches use document clustering as a preprocessing step to group similar documents. Additionally, document clustering is able to inform the biomedical literature searches required for the practice of evidence-based medicine. We introduce Swanson's UnDiscovered Public Knowledge (UDPK) model to generate biomedical hypotheses from biomedical literature such as MEDLINE by discovering novel connections among logically-related biomedical concepts. Another important area of text mining is document classification. Document classification is a valuable tool for biomedical tasks that involve large amounts of text. We survey well-known classification techniques in biomedicine. As the last example of text mining in biomedicine and healthcare, we survey information extraction. Information extraction is the process of scanning text for information relevant to some interest, including extracting entities, relations, and events. We also address techniques and issues of evaluating text mining applications in biomedicine and healthcare.

A Comparison of Bio and Medical Ontologies (생물학과 의학 온톨로지 비교 분석)

  • Yu, Jeong-Youn;Eom, Dong-Myung;Lee, Kyu-Chul
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.2 s.17
    • /
    • pp.31-45
    • /
    • 2006
  • Bioinformatics and medical informatics have moved to make its knowledge more systematically and computationally using ontology. These ontologies help querying ring and analyzing data and used to develop application in biomedical. However, no research about ontology of oriental medical exists. Thus, to maximize the power of transitional knowledge, it is necessary to construct the ontology for oriental medical. This paper compares the ontologies of bio and medic by an objective point of view to guide the construction of oriental medic ontologies.

  • PDF

Protein Ontology: Semantic Data Integration in Proteomics

  • Sidhu, Amandeep S.;Dillon, Tharam S.;Chang, Elizabeth;Sidhu, Baldev S.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.388-391
    • /
    • 2005
  • The Protein Structural and Functional Conservation need a common language for data definition. With the help of common language provided by Protein Ontology the high level of sequence and functional conservation can be extended to all organisms with the likelihood that proteins that carry out core biological processes will again be probable orthologues. The structural and functional conservation in these proteins presents both opportunities and challenges. The main opportunity lies in the possibility of automated transfer of protein data annotations from experimentally traceable model organisms to a less traceable organism based on protein sequence similarity. Such information can be used to improve human health or agriculture. The challenge lies in using a common language to transfer protein data annotations among different species of organisms. First step in achieving this huge challenge is producing a structured, precisely defined common vocabulary using Protein Ontology. The Protein Ontology described in this paper covers the sequence, structure and biological roles of Protein Complexes in any organism.

  • PDF

Improving methods for normalizing biomedical text entities with concepts from an ontology with (almost) no training data at BLAH5 the CONTES

  • Ferre, Arnaud;Ba, Mouhamadou;Bossy, Robert
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.20.1-20.5
    • /
    • 2019
  • Entity normalization, or entity linking in the general domain, is an information extraction task that aims to annotate/bind multiple words/expressions in raw text with semantic references, such as concepts of an ontology. An ontology consists minimally of a formally organized vocabulary or hierarchy of terms, which captures knowledge of a domain. Presently, machine-learning methods, often coupled with distributional representations, achieve good performance. However, these require large training datasets, which are not always available, especially for tasks in specialized domains. CONTES (CONcept-TErm System) is a supervised method that addresses entity normalization with ontology concepts using small training datasets. CONTES has some limitations, such as it does not scale well with very large ontologies, it tends to overgeneralize predictions, and it lacks valid representations for the out-of-vocabulary words. Here, we propose to assess different methods to reduce the dimensionality in the representation of the ontology. We also propose to calibrate parameters in order to make the predictions more accurate, and to address the problem of out-of-vocabulary words, with a specific method.

Choosing preferable labels for the Japanese translation of the Human Phenotype Ontology

  • Ninomiya, Kota;Takatsuki, Terue;Kushida, Tatsuya;Yamamoto, Yasunori;Ogishima, Soichi
    • Genomics & Informatics
    • /
    • v.18 no.2
    • /
    • pp.23.1-23.6
    • /
    • 2020
  • The Human Phenotype Ontology (HPO) is the de facto standard ontology to describe human phenotypes in detail, and it is actively used, particularly in the field of rare disease diagnoses. For clinicians who are not fluent in English, the HPO has been translated into many languages, and there have been four initiatives to develop Japanese translations. At the Biomedical Linked Annotation Hackathon 6 (BLAH6), a rule-based approach was attempted to determine the preferable Japanese translation for each HPO term among the candidates developed by the four approaches. The relationship between the HPO and Mammalian Phenotype translations was also investigated, with the eventual goal of harmonizing the two translations to facilitate phenotype-based comparisons of species in Japanese through cross-species phenotype matching. In order to deal with the increase in the number of HPO terms and the need for manual curation, it would be useful to have a dictionary containing word-by-word correspondences and fixed translation phrases for English word order. These considerations seem applicable to HPO localization into other languages.